NCTCMumbai
commited on
Commit
•
e34a93e
1
Parent(s):
8fe98c8
Upload 7 files
Browse files- app.py +160 -0
- backend/__pycache__/query_llm.cpython-310.pyc +0 -0
- backend/__pycache__/semantic_search.cpython-310.pyc +0 -0
- backend/query_llm.py +156 -0
- backend/semantic_search.py +19 -0
- logo.png +0 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Credit to Derek Thomas, derek@huggingface.co
|
4 |
+
"""
|
5 |
+
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
# subprocess.run(["pip", "install", "--upgrade", "transformers[torch,sentencepiece]==4.34.1"])
|
9 |
+
|
10 |
+
import logging
|
11 |
+
from pathlib import Path
|
12 |
+
from time import perf_counter
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
from jinja2 import Environment, FileSystemLoader
|
16 |
+
import numpy as np
|
17 |
+
from sentence_transformers import CrossEncoder
|
18 |
+
|
19 |
+
from backend.query_llm import generate_hf, generate_openai
|
20 |
+
from backend.semantic_search import table, retriever
|
21 |
+
|
22 |
+
VECTOR_COLUMN_NAME = "embeddings"
|
23 |
+
TEXT_COLUMN_NAME = "text"
|
24 |
+
|
25 |
+
proj_dir = Path(__file__).parent
|
26 |
+
# Setting up the logging
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
# Set up the template environment with the templates directory
|
31 |
+
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
32 |
+
|
33 |
+
# Load the templates directly from the environment
|
34 |
+
template = env.get_template('template.j2')
|
35 |
+
template_html = env.get_template('template_html.j2')
|
36 |
+
|
37 |
+
# crossEncoder
|
38 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
39 |
+
|
40 |
+
# Examples
|
41 |
+
examples = ['What is Let Export Order?',
|
42 |
+
'What are benefits of the AEO Scheme ?',
|
43 |
+
'Which circular talks about EOU?', ]
|
44 |
+
|
45 |
+
|
46 |
+
def add_text(history, text):
|
47 |
+
history = [] if history is None else history
|
48 |
+
history = history + [(text, None)]
|
49 |
+
return history, gr.Textbox(value="", interactive=False)
|
50 |
+
|
51 |
+
|
52 |
+
def bot(history, api_kind):
|
53 |
+
top_rerank = 15
|
54 |
+
top_k_rank = 8
|
55 |
+
query = history[-1][0]
|
56 |
+
|
57 |
+
if not query:
|
58 |
+
gr.Warning("Please submit a non-empty string as a prompt")
|
59 |
+
raise ValueError("Empty string was submitted")
|
60 |
+
|
61 |
+
logger.warning('Retrieving documents...')
|
62 |
+
# Retrieve documents relevant to query
|
63 |
+
document_start = perf_counter()
|
64 |
+
|
65 |
+
query_vec = retriever.encode(query)
|
66 |
+
logger.warning(f'Finished query vec')
|
67 |
+
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
logger.warning(f'Finished search')
|
72 |
+
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
|
73 |
+
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
74 |
+
logger.warning(f'start cross encoder {len(documents)}')
|
75 |
+
# Retrieve documents relevant to query
|
76 |
+
query_doc_pair = [[query, doc] for doc in documents]
|
77 |
+
cross_scores = cross_encoder.predict(query_doc_pair)
|
78 |
+
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
79 |
+
logger.warning(f'Finished cross encoder {len(documents)}')
|
80 |
+
|
81 |
+
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
82 |
+
logger.warning(f'num documents {len(documents)}')
|
83 |
+
|
84 |
+
document_time = perf_counter() - document_start
|
85 |
+
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
|
86 |
+
|
87 |
+
# Create Prompt
|
88 |
+
prompt = template.render(documents=documents, query=query)
|
89 |
+
prompt_html = template_html.render(documents=documents, query=query)
|
90 |
+
|
91 |
+
if api_kind == "HuggingFace":
|
92 |
+
generate_fn = generate_hf
|
93 |
+
elif api_kind == "OpenAI":
|
94 |
+
generate_fn = generate_openai
|
95 |
+
elif api_kind is None:
|
96 |
+
gr.Warning("API name was not provided")
|
97 |
+
raise ValueError("API name was not provided")
|
98 |
+
else:
|
99 |
+
gr.Warning(f"API {api_kind} is not supported")
|
100 |
+
raise ValueError(f"API {api_kind} is not supported")
|
101 |
+
|
102 |
+
history[-1][1] = ""
|
103 |
+
for character in generate_fn(prompt, history[:-1]):
|
104 |
+
history[-1][1] = character
|
105 |
+
yield history, prompt_html
|
106 |
+
|
107 |
+
|
108 |
+
with gr.Blocks() as demo:
|
109 |
+
# Beautiful heading with logo
|
110 |
+
gr.HTML(value="""
|
111 |
+
<div style="display: flex; align-items: center; justify-content: space-between;">
|
112 |
+
<h1 style="color: #2ECC71">Customs Manual Chatbot</h1>
|
113 |
+
<img src='logo.png' alt="Chatbot" width="50" height="50" />
|
114 |
+
</div>
|
115 |
+
""", elem_id="heading")
|
116 |
+
|
117 |
+
# Formatted description
|
118 |
+
gr.HTML(value="""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by National Customs Targeting Center using Open source LLMs.</p>""", elem_id="description")
|
119 |
+
|
120 |
+
chatbot = gr.Chatbot(
|
121 |
+
[],
|
122 |
+
elem_id="chatbot",
|
123 |
+
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
|
124 |
+
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
|
125 |
+
bubble_full_width=False,
|
126 |
+
show_copy_button=True,
|
127 |
+
show_share_button=True,
|
128 |
+
)
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
txt = gr.Textbox(
|
132 |
+
scale=3,
|
133 |
+
show_label=False,
|
134 |
+
placeholder="Enter text and press enter",
|
135 |
+
container=False,
|
136 |
+
)
|
137 |
+
txt_btn = gr.Button(value="Submit text", scale=1)
|
138 |
+
|
139 |
+
api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace")
|
140 |
+
|
141 |
+
prompt_html = gr.HTML()
|
142 |
+
# Turn off interactivity while generating if you click
|
143 |
+
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
144 |
+
bot, [chatbot, api_kind], [chatbot, prompt_html])
|
145 |
+
|
146 |
+
# Turn it back on
|
147 |
+
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
148 |
+
|
149 |
+
# Turn off interactivity while generating if you hit enter
|
150 |
+
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
151 |
+
bot, [chatbot, api_kind], [chatbot, prompt_html])
|
152 |
+
|
153 |
+
# Turn it back on
|
154 |
+
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
155 |
+
|
156 |
+
# Examples
|
157 |
+
gr.Examples(examples, txt)
|
158 |
+
|
159 |
+
demo.queue()
|
160 |
+
demo.launch(debug=True)
|
backend/__pycache__/query_llm.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
backend/__pycache__/semantic_search.cpython-310.pyc
ADDED
Binary file (700 Bytes). View file
|
|
backend/query_llm.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import openai
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from os import getenv
|
7 |
+
from typing import Any, Dict, Generator, List
|
8 |
+
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
+
from transformers import AutoTokenizer
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
13 |
+
|
14 |
+
temperature = 0.9
|
15 |
+
top_p = 0.6
|
16 |
+
repetition_penalty = 1.2
|
17 |
+
|
18 |
+
OPENAI_KEY = getenv("OPENAI_API_KEY")
|
19 |
+
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
|
20 |
+
|
21 |
+
hf_client = InferenceClient(
|
22 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
23 |
+
token=HF_TOKEN
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def format_prompt(message: str, api_kind: str):
|
28 |
+
"""
|
29 |
+
Formats the given message using a chat template.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
message (str): The user message to be formatted.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: Formatted message after applying the chat template.
|
36 |
+
"""
|
37 |
+
|
38 |
+
# Create a list of message dictionaries with role and content
|
39 |
+
messages: List[Dict[str, Any]] = [{'role': 'user', 'content': message}]
|
40 |
+
|
41 |
+
if api_kind == "openai":
|
42 |
+
return messages
|
43 |
+
elif api_kind == "hf":
|
44 |
+
return tokenizer.apply_chat_template(messages, tokenize=False)
|
45 |
+
elif api_kind:
|
46 |
+
raise ValueError("API is not supported")
|
47 |
+
|
48 |
+
|
49 |
+
def generate_hf(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256,
|
50 |
+
top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]:
|
51 |
+
"""
|
52 |
+
Generate a sequence of tokens based on a given prompt and history using Mistral client.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
prompt (str): The initial prompt for the text generation.
|
56 |
+
history (str): Context or history for the text generation.
|
57 |
+
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9.
|
58 |
+
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256.
|
59 |
+
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95.
|
60 |
+
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
Generator[str, None, str]: A generator yielding chunks of generated text.
|
64 |
+
Returns a final string if an error occurs.
|
65 |
+
"""
|
66 |
+
|
67 |
+
temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low
|
68 |
+
top_p = float(top_p)
|
69 |
+
|
70 |
+
generate_kwargs = {
|
71 |
+
'temperature': temperature,
|
72 |
+
'max_new_tokens': max_new_tokens,
|
73 |
+
'top_p': top_p,
|
74 |
+
'repetition_penalty': repetition_penalty,
|
75 |
+
'do_sample': True,
|
76 |
+
'seed': 42,
|
77 |
+
}
|
78 |
+
|
79 |
+
formatted_prompt = format_prompt(prompt, "hf")
|
80 |
+
|
81 |
+
try:
|
82 |
+
stream = hf_client.text_generation(formatted_prompt, **generate_kwargs,
|
83 |
+
stream=True, details=True, return_full_text=False)
|
84 |
+
output = ""
|
85 |
+
for response in stream:
|
86 |
+
output += response.token.text
|
87 |
+
yield output
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
if "Too Many Requests" in str(e):
|
91 |
+
print("ERROR: Too many requests on Mistral client")
|
92 |
+
gr.Warning("Unfortunately Mistral is unable to process")
|
93 |
+
return "Unfortunately, I am not able to process your request now."
|
94 |
+
elif "Authorization header is invalid" in str(e):
|
95 |
+
print("Authetification error:", str(e))
|
96 |
+
gr.Warning("Authentication error: HF token was either not provided or incorrect")
|
97 |
+
return "Authentication error"
|
98 |
+
else:
|
99 |
+
print("Unhandled Exception:", str(e))
|
100 |
+
gr.Warning("Unfortunately Mistral is unable to process")
|
101 |
+
return "I do not know what happened, but I couldn't understand you."
|
102 |
+
|
103 |
+
|
104 |
+
def generate_openai(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256,
|
105 |
+
top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]:
|
106 |
+
"""
|
107 |
+
Generate a sequence of tokens based on a given prompt and history using Mistral client.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
prompt (str): The initial prompt for the text generation.
|
111 |
+
history (str): Context or history for the text generation.
|
112 |
+
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9.
|
113 |
+
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256.
|
114 |
+
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95.
|
115 |
+
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
Generator[str, None, str]: A generator yielding chunks of generated text.
|
119 |
+
Returns a final string if an error occurs.
|
120 |
+
"""
|
121 |
+
|
122 |
+
temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low
|
123 |
+
top_p = float(top_p)
|
124 |
+
|
125 |
+
generate_kwargs = {
|
126 |
+
'temperature': temperature,
|
127 |
+
'max_tokens': max_new_tokens,
|
128 |
+
'top_p': top_p,
|
129 |
+
'frequency_penalty': max(-2., min(repetition_penalty, 2.)),
|
130 |
+
}
|
131 |
+
|
132 |
+
formatted_prompt = format_prompt(prompt, "openai")
|
133 |
+
|
134 |
+
try:
|
135 |
+
stream = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301",
|
136 |
+
messages=formatted_prompt,
|
137 |
+
**generate_kwargs,
|
138 |
+
stream=True)
|
139 |
+
output = ""
|
140 |
+
for chunk in stream:
|
141 |
+
output += chunk.choices[0].delta.get("content", "")
|
142 |
+
yield output
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
if "Too Many Requests" in str(e):
|
146 |
+
print("ERROR: Too many requests on OpenAI client")
|
147 |
+
gr.Warning("Unfortunately OpenAI is unable to process")
|
148 |
+
return "Unfortunately, I am not able to process your request now."
|
149 |
+
elif "You didn't provide an API key" in str(e):
|
150 |
+
print("Authetification error:", str(e))
|
151 |
+
gr.Warning("Authentication error: OpenAI key was either not provided or incorrect")
|
152 |
+
return "Authentication error"
|
153 |
+
else:
|
154 |
+
print("Unhandled Exception:", str(e))
|
155 |
+
gr.Warning("Unfortunately OpenAI is unable to process")
|
156 |
+
return "I do not know what happened, but I couldn't understand you."
|
backend/semantic_search.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import logging
|
3 |
+
import lancedb
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
|
8 |
+
EMB_MODEL_NAME = "thenlper/gte-base"
|
9 |
+
DB_TABLE_NAME = "Huggingface_docs"
|
10 |
+
|
11 |
+
# Setting up the logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
retriever = SentenceTransformer(EMB_MODEL_NAME)
|
15 |
+
|
16 |
+
# db
|
17 |
+
db_uri = os.path.join(Path(__file__).parents[1], ".lancedb")
|
18 |
+
db = lancedb.connect(db_uri)
|
19 |
+
table = db.open_table(DB_TABLE_NAME)
|
logo.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers[torch,sentencepiece]
|
2 |
+
wikiextractor==3.0.6
|
3 |
+
sentence-transformers>2.2.0
|
4 |
+
ipywidgets==8.1.1
|
5 |
+
tqdm==4.66.1
|
6 |
+
aiohttp==3.8.6
|
7 |
+
huggingface-hub==0.17.3
|
8 |
+
lancedb
|
9 |
+
openai==0.28
|