import openai import gradio as gr from os import getenv from typing import Any, Dict, Generator, List from huggingface_hub import InferenceClient from transformers import AutoTokenizer import google.generativeai as genai import os import PIL.Image import gradio as gr #from gradio_multimodalchatbot import MultimodalChatbot from gradio.data_classes import FileData #tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") # temperature = 0.2 # #top_p = 0.6 # repetition_penalty = 1.0 temperature = 0.5 top_p = 0.7 repetition_penalty = 1.2 # Fetch an environment variable. GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY') genai.configure(api_key=GOOGLE_API_KEY) OPENAI_KEY = getenv("OPENAI_API_KEY") HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") # hf_client = InferenceClient( # "mistralai/Mistral-7B-Instruct-v0.1", # token=HF_TOKEN # ) hf_client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN ) def format_prompt(message: str, api_kind: str): """ Formats the given message using a chat template. Args: message (str): The user message to be formatted. Returns: str: Formatted message after applying the chat template. """ # Create a list of message dictionaries with role and content messages1: List[Dict[str, Any]] = [{'role': 'user', 'content': message}] messages2: List[Dict[str, Any]] = [{'role': 'user', 'parts': message}] if api_kind == "openai": return messages1 elif api_kind == "hf": return tokenizer.apply_chat_template(messages, tokenize=False) elif api_kind=="gemini": print(messages2) return messages2 else: raise ValueError("API is not supported") def generate_hf(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 4000, top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]: """ Generate a sequence of tokens based on a given prompt and history using Mistral client. Args: prompt (str): The initial prompt for the text generation. history (str): Context or history for the text generation. temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. Returns: Generator[str, None, str]: A generator yielding chunks of generated text. Returns a final string if an error occurs. """ temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low top_p = float(top_p) generate_kwargs = { 'temperature': temperature, 'max_new_tokens': max_new_tokens, 'top_p': top_p, 'repetition_penalty': repetition_penalty, 'do_sample': True, 'seed': 42, } formatted_prompt = format_prompt(prompt, "hf") try: stream = hf_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output except Exception as e: if "Too Many Requests" in str(e): print("ERROR: Too many requests on Mistral client") gr.Warning("Unfortunately Mistral is unable to process") return "Unfortunately, I am not able to process your request now." elif "Authorization header is invalid" in str(e): print("Authetification error:", str(e)) gr.Warning("Authentication error: HF token was either not provided or incorrect") return "Authentication error" else: print("Unhandled Exception:", str(e)) gr.Warning("Unfortunately Mistral is unable to process") return "I do not know what happened, but I couldn't understand you." def generate_openai(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256, top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]: """ Generate a sequence of tokens based on a given prompt and history using Mistral client. Args: prompt (str): The initial prompt for the text generation. history (str): Context or history for the text generation. temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. Returns: Generator[str, None, str]: A generator yielding chunks of generated text. Returns a final string if an error occurs. """ temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low top_p = float(top_p) generate_kwargs = { 'temperature': temperature, 'max_tokens': max_new_tokens, 'top_p': top_p, 'frequency_penalty': max(-2., min(repetition_penalty, 2.)), } formatted_prompt = format_prompt(prompt, "hf") try: stream = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301", messages=formatted_prompt, **generate_kwargs, stream=True) output = "" for chunk in stream: output += chunk.choices[0].delta.get("content", "") yield output except Exception as e: if "Too Many Requests" in str(e): print("ERROR: Too many requests on OpenAI client") gr.Warning("Unfortunately OpenAI is unable to process") return "Unfortunately, I am not able to process your request now." elif "You didn't provide an API key" in str(e): print("Authetification error:", str(e)) gr.Warning("Authentication error: OpenAI key was either not provided or incorrect") return "Authentication error" else: print("Unhandled Exception:", str(e)) gr.Warning("Unfortunately OpenAI is unable to process") return "I do not know what happened, but I couldn't understand you." def generate_gemini(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 4000, top_p: float = 0.95, repetition_penalty: float = 1.0): # For better security practices, retrieve sensitive information like API keys from environment variables. # Initialize genai models model = genai.GenerativeModel('gemini-pro') api_key = os.environ.get("GOOGEL_API_KEY") genai.configure(api_key=api_key) #model = genai.GenerativeModel('gemini-pro') #chat = model.start_chat(history=[]) candidate_count=1 max_output_tokens=max_new_tokens temperature=temperature top_p=top_p formatted_prompt = format_prompt(prompt, "gemini") try: stream = model.generate_content(formatted_prompt,generation_config=genai.GenerationConfig(temperature=temperature,candidate_count=1 ,max_output_tokens=max_new_tokens,top_p=top_p), stream=True) output = "" for response in stream: output += response.text yield output except Exception as e: if "Too Many Requests" in str(e): print("ERROR: Too many requests on Mistral client") gr.Warning("Unfortunately Mistral is unable to process") return "Unfortunately, I am not able to process your request now." elif "Authorization header is invalid" in str(e): print("Authetification error:", str(e)) gr.Warning("Authentication error: HF token was either not provided or incorrect") return "Authentication error" else: print("Unhandled Exception:", str(e)) gr.Warning("Unfortunately Mistral is unable to process") return "I do not know what happened, but I couldn't understand you." # def gemini(input, file, chatbot=[]): # """ # Function to handle gemini model and gemini vision model interactions. # Parameters: # input (str): The input text. # file (File): An optional file object for image processing. # chatbot (list): A list to keep track of chatbot interactions. # Returns: # tuple: Updated chatbot interaction list, an empty string, and None. # """ # messages = [] # print(chatbot) # # Process previous chatbot messages if present # if len(chatbot) != 0: # for messages_dict in chatbot: # user_text = messages_dict[0]['text'] # bot_text = messages_dict[1]['text'] # messages.extend([ # {'role': 'user', 'parts': [user_text]}, # {'role': 'model', 'parts': [bot_text]} # ]) # messages.append({'role': 'user', 'parts': [input]}) # else: # messages.append({'role': 'user', 'parts': [input]}) # try: # response = model.generate_content(messages) # gemini_resp = response.text # # Construct list of messages in the required format # user_msg = {"text": input, "files": []} # bot_msg = {"text": gemini_resp, "files": []} # chatbot.append([user_msg, bot_msg]) # except Exception as e: # # Handling exceptions and raising error to the modal # print(f"An error occurred: {e}") # raise gr.Error(e) # return chatbot, "", None # # Define the Gradio Blocks interface # with gr.Blocks() as demo: # # Add a centered header using HTML # gr.HTML("

Gemini Chat PRO API

") # # Initialize the MultimodalChatbot component # multi = MultimodalChatbot(value=[], height=800) # with gr.Row(): # # Textbox for user input with increased scale for better visibility # tb = gr.Textbox(scale=4, placeholder='Input text and press Enter') # # Define the behavior on text submission # tb.submit(gemini, [tb, multi], [multi, tb]) # # Launch the demo with a queue to handle multiple users # demo.queue().launch()