File size: 12,822 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf60cf
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8607e5
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf60cf
 
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf60cf
 
 
 
 
97b6013
 
6cf60cf
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3941464
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3941464
 
 
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8607e5
 
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3941464
 
 
 
97b6013
 
 
3941464
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import pandas as pd
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import sys
import random
sys.path.append('models')
from official.nlp.data import classifier_data_lib
from official.nlp.bert import tokenization
from official.nlp import optimization
tf.get_logger().setLevel('ERROR')
from huggingface_hub import InferenceClient
import math
import gradio as gr
from datetime import datetime

num_warmup_steps=1
num_train_steps=1
init_lr = 3e-5
optimizer = optimization.create_optimizer(init_lr=init_lr,num_train_steps=num_train_steps,num_warmup_steps=num_warmup_steps,optimizer_type='adamw')

###    Load Model
checkpoint_filepath=r'./Checkpoint'
model = tf.keras.models.load_model(checkpoint_filepath, custom_objects={'KerasLayer':hub.KerasLayer , 'AdamWeightDecay': optimizer})

df_report = pd.read_csv('./CTH_Description.csv')
df_report['CTH Code'] = df_report['CTH Code'].astype(str).str.zfill(8)

df_report_DUTY = pd.read_csv('./CTH_WISE_DUTY_RATE.csv')
df_report_DUTY['CTH'] = df_report_DUTY['CTH'].astype(str).str.zfill(8)

df = pd.read_csv("./CTH_CODE_MAP.csv")
df['CTH'] = df['CTH'].astype(str).str.zfill(8)
df = df[['CTH', 'code']]

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")



class_names=df[['CTH','code']].drop_duplicates(subset='CTH').sort_values(by='code',ignore_index=True)['CTH'].values.tolist()
label_list=list(range(0,len(class_names)))
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
train_batch_size = 32 # batch size ( 16 choosen to avoid Out-Of-Memory errors)

# Get BERT layer and tokenizer:
# More details here: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4" , trainable = True)
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
tokenizer = tokenization.FullTokenizer(vocab_file , do_lower_case)

# This provides a function to convert each row to input features and label ( as required by BERT)

max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
def to_feature(text, label, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer):
    example = classifier_data_lib.InputExample(guid = None,
                                             text_a = text.numpy(),
                                             text_b = None,
                                             label = label.numpy())
    feature = classifier_data_lib.convert_single_example(0 , example , label_list , max_seq_length , tokenizer)
  
    return (feature.input_ids , feature.input_mask , feature.segment_ids , feature.label_id)


def to_feature_map(text, label):
    input_ids , input_mask , segment_ids , label_id = tf.py_function(to_feature , inp = [text , label],
                                                                   Tout = [tf.int32 , tf.int32 , tf.int32 , tf.int32])
  
    input_ids.set_shape([max_seq_length])
    input_mask.set_shape([max_seq_length])
    segment_ids.set_shape([max_seq_length])
    label_id.set_shape([])

    x = {
      "input_word_ids": input_ids,
       "input_mask": input_mask,
       "input_type_ids": segment_ids
    }

    return(x,label_id)

def print3largest(arr, arr_size): 
    third = first = second = -sys.maxsize 
    for i in range(0, arr_size):
     
        if (arr[i] > first):        
            third = second
            second = first
            first = arr[i]        
        elif (arr[i] > second):       
            third = second
            second = arr[i]         
        elif (arr[i] > third):
            third = arr[i]
    pred_value_max_three=[first, second, third]  
    return pred_value_max_three

def count_special_character(string): 
    special_char= 0   
    for i in range(len(string)):  
        ch = string[i]
        if (string[i].isalpha()):  
            continue
        else: 
            special_char += 1

    if len(string)==special_char:
        return False
    else:
        return True

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt


additional_inputs=[
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=1024,
        minimum=0,
        maximum=4096,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.50,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

def predict_CTH(txt):
    print('Desc: ',txt)
    now = datetime.now()
    print("Time =", now)
    if (txt!='') and len(txt)>=3 and (count_special_character(txt)):
        valid_data = tf.data.Dataset.from_tensor_slices(([txt] , [1])) # 1 refers to 'entertainment' and 2 refers to 'sport'
        valid_data = (valid_data.map(to_feature_map).batch(1))
        preds = model.predict(valid_data)
        predicted_values = tf.nn.softmax(preds)
        arr = predicted_values.numpy().tolist()[0]
        n = len(arr)
        pred_value_max_three=print3largest(arr, n)

        sum_all = pred_value_max_three[0] + pred_value_max_three[1] + pred_value_max_three[2]

        val_1 = pred_value_max_three[0]/sum_all
        val_2 = pred_value_max_three[1]/sum_all
        val_3 = pred_value_max_three[2]/sum_all

        if pred_value_max_three[0]<=0.000131:
            Var_CTH=[]
            Var_desc=[]
            Var_duty=[]
            pred_duty=''
            pred_desc=''
            pred_CTH=''

            return{'Not a adequate description':float(1.0)}
        else:
            Var_CTH=[]
            Var_desc=[]
            Var_duty=[]
            pred_duty=''
            pred_desc=''
            pred_CTH=''

            for i in pred_value_max_three:
                predicted_code=np.where(predicted_values.numpy()==i)[1][0]
                pred_CTH=df[df['code'] == predicted_code]['CTH'].iloc[0]  

                try:
                    pred_duty=df_report_DUTY[df_report_DUTY['CTH']==str(pred_CTH)]['DUTY_RATE'].iloc[0]
                except:
                    pred_duty=''
                    pass

                try:
                    pred_desc=df_report[df_report['CTH Code']==str(pred_CTH)]['Concat Description'].iloc[0]
                except:
                    pred_desc=''
                    pass

                Var_CTH.append(pred_CTH)
                Var_desc.append(pred_desc)
                Var_duty.append(pred_duty)

            P1 ='CTH: '+str(Var_CTH[0])+'   Duty Rate(%): '+ str(Var_duty[0]) 
            P2 ='CTH: '+str(Var_CTH[1])+'   Duty Rate(%): '+ str(Var_duty[1])
            P3 ='CTH: '+str(Var_CTH[2])+'   Duty Rate(%): '+ str(Var_duty[2]) 

            Q1='Desc: '+str(Var_desc[0])
            Q2='Desc: '+str(Var_desc[1])
            Q3='Desc: '+str(Var_desc[2])
  
            return {str(P1):float(val_1),str(Q1):float(val_1),
                    str(P2):float(val_2),str(Q2):float(val_2),
                    str(P3):float(val_3),str(Q3):float(val_3),}
    else:
        return{'Enter Correct Description':float(1.0)}

def llm_model_function(txt,history,chatbot=[], temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0,):
    system_prompt=[]
    chatbot=[]
    if (txt!='') and len(txt)>=3 and (count_special_character(txt)):
        valid_data = tf.data.Dataset.from_tensor_slices(([txt] , [1])) # 1 refers to 'entertainment' and 2 refers to 'sport'
        valid_data = (valid_data.map(to_feature_map).batch(1))
        preds = model.predict(valid_data)
        predicted_values = tf.nn.softmax(preds)
        arr = predicted_values.numpy().tolist()[0]
        n = len(arr)
        pred_value_max_three=print3largest(arr, n)

        sum_all = pred_value_max_three[0] + pred_value_max_three[1] + pred_value_max_three[2]

        val_1 = pred_value_max_three[0]/sum_all
        val_2 = pred_value_max_three[1]/sum_all
        val_3 = pred_value_max_three[2]/sum_all

        if pred_value_max_three[0]<=0.000131:
            Var_CTH=[]
            Var_desc=[]
            Var_duty=[]
            pred_duty=''
            pred_desc=''
            pred_CTH=''

            #return{'Not a adequate description':float(1.0)}
            chatbot.append(('Not a adequate description', 'Not a adequate description'))
            return "", chatbot
        else:
            Var_CTH=[]
            Var_desc=[]
            Var_duty=[]
            pred_duty=''
            pred_desc=''
            pred_CTH=''

            for i in pred_value_max_three:
                predicted_code=np.where(predicted_values.numpy()==i)[1][0]
                pred_CTH=df[df['code'] == predicted_code]['CTH'].iloc[0]    

                try:
                    pred_duty=df_report_DUTY[df_report_DUTY['CTH']==str(pred_CTH)]['DUTY_RATE'].iloc[0]
                    pred_desc=df_report[df_report['CTH Code']==str(pred_CTH)]['Concat Description'].iloc[0]
                except:
                    pred_duty=''
                    pred_desc=''
                    pass

                Var_CTH.append(pred_CTH)
                Var_desc.append(pred_desc)
                Var_duty.append(pred_duty)

            P1 ='CTH: '+str(Var_CTH[0])+'   Duty Rate(%): '+ str(Var_duty[0]) 
            P2 ='CTH: '+str(Var_CTH[1])+'   Duty Rate(%): '+ str(Var_duty[1])
            P3 ='CTH: '+str(Var_CTH[2])+'   Duty Rate(%): '+ str(Var_duty[2]) 

            Q1='Desc: '+str(Var_desc[0])
            Q2='Desc: '+str(Var_desc[1])
            Q3='Desc: '+str(Var_desc[2])

            output_str_msg='1. '+str(P1)+' '+str(Q1)+' '+'2. '+str(P2)+' '+str(Q2)+' '+'3. '+str(P3)+' '+str(Q3)

            prompt=f'First Explain What is the product- {txt}. Which is the most appropriate 8 Digit classification code out of the three given below classes. Explain the reason step by step. if none of the three classification is applicable more precisely due to lack of any additional information, tell you need additional information and what is the that additional information. {output_str_msg} ?'

            temperature = float(temperature)
            if temperature < 1e-2:
                temperature = 1e-2
            top_p = float(top_p)

            generate_kwargs = dict(
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                do_sample=True,
                seed=42,
            )

            formatted_prompt = format_prompt(f", {prompt}", history)
            stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                output += response.token.text

            chatbot.append((txt, output))
            return "", chatbot 
    else:
        # warning_msg = f"Unexpected response"
        # raise gr.Error(warning_msg)
        chatbot.append(('Not a adequate description', 'Not a adequate description'))
        return "", chatbot

def product_explaination(txt,history,chatbot=[], temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0,):
    print('Input Descrption is:',txt)
    chatbot=[]
    prompt=f'What is the product- {txt}?'
    print('prompt',prompt)
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(f", {prompt}", history)
    
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text

    chatbot.append((txt, output))
    return "", chatbot