NCTC / models /research /deeplab /datasets /build_voc2012_data.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
5.01 kB
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts PASCAL VOC 2012 data to TFRecord file format with Example protos.
PASCAL VOC 2012 dataset is expected to have the following directory structure:
+ pascal_voc_seg
- build_data.py
- build_voc2012_data.py (current working directory).
+ VOCdevkit
+ VOC2012
+ JPEGImages
+ SegmentationClass
+ ImageSets
+ Segmentation
+ tfrecord
Image folder:
./VOCdevkit/VOC2012/JPEGImages
Semantic segmentation annotations:
./VOCdevkit/VOC2012/SegmentationClass
list folder:
./VOCdevkit/VOC2012/ImageSets/Segmentation
This script converts data into sharded data files and save at tfrecord folder.
The Example proto contains the following fields:
image/encoded: encoded image content.
image/filename: image filename.
image/format: image file format.
image/height: image height.
image/width: image width.
image/channels: image channels.
image/segmentation/class/encoded: encoded semantic segmentation content.
image/segmentation/class/format: semantic segmentation file format.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os.path
import sys
import build_data
from six.moves import range
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('image_folder',
'./VOCdevkit/VOC2012/JPEGImages',
'Folder containing images.')
tf.app.flags.DEFINE_string(
'semantic_segmentation_folder',
'./VOCdevkit/VOC2012/SegmentationClassRaw',
'Folder containing semantic segmentation annotations.')
tf.app.flags.DEFINE_string(
'list_folder',
'./VOCdevkit/VOC2012/ImageSets/Segmentation',
'Folder containing lists for training and validation')
tf.app.flags.DEFINE_string(
'output_dir',
'./tfrecord',
'Path to save converted SSTable of TensorFlow examples.')
_NUM_SHARDS = 4
def _convert_dataset(dataset_split):
"""Converts the specified dataset split to TFRecord format.
Args:
dataset_split: The dataset split (e.g., train, test).
Raises:
RuntimeError: If loaded image and label have different shape.
"""
dataset = os.path.basename(dataset_split)[:-4]
sys.stdout.write('Processing ' + dataset)
filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
num_images = len(filenames)
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS))
image_reader = build_data.ImageReader('jpeg', channels=3)
label_reader = build_data.ImageReader('png', channels=1)
for shard_id in range(_NUM_SHARDS):
output_filename = os.path.join(
FLAGS.output_dir,
'%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i + 1, len(filenames), shard_id))
sys.stdout.flush()
# Read the image.
image_filename = os.path.join(
FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format)
image_data = tf.gfile.GFile(image_filename, 'rb').read()
height, width = image_reader.read_image_dims(image_data)
# Read the semantic segmentation annotation.
seg_filename = os.path.join(
FLAGS.semantic_segmentation_folder,
filenames[i] + '.' + FLAGS.label_format)
seg_data = tf.gfile.GFile(seg_filename, 'rb').read()
seg_height, seg_width = label_reader.read_image_dims(seg_data)
if height != seg_height or width != seg_width:
raise RuntimeError('Shape mismatched between image and label.')
# Convert to tf example.
example = build_data.image_seg_to_tfexample(
image_data, filenames[i], height, width, seg_data)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
def main(unused_argv):
dataset_splits = tf.gfile.Glob(os.path.join(FLAGS.list_folder, '*.txt'))
for dataset_split in dataset_splits:
_convert_dataset(dataset_split)
if __name__ == '__main__':
tf.app.run()