Spaces:
Running
Running
NCTCMumbai
commited on
Commit
·
0b8359d
1
Parent(s):
084d982
Upload 2571 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +7 -0
- CTH_CODE_MAP.csv +3 -0
- CTH_Description.csv +0 -0
- CTH_WISE_DUTY_RATE.csv +0 -0
- Checkpoint/assets/vocab.txt +0 -0
- Checkpoint/keras_metadata.pb +3 -0
- Checkpoint/saved_model.pb +3 -0
- Checkpoint/variables/variables.data-00000-of-00001 +3 -0
- Checkpoint/variables/variables.index +0 -0
- app.py +220 -0
- models/.github/ISSUE_TEMPLATE/00-official-bug-report-issue.md +59 -0
- models/.github/ISSUE_TEMPLATE/10-official-documentation-issue.md +20 -0
- models/.github/ISSUE_TEMPLATE/20-official-feature-request-issue.md +26 -0
- models/.github/ISSUE_TEMPLATE/30-research-bug-report-issue.md +58 -0
- models/.github/ISSUE_TEMPLATE/40-research-documentation-issue.md +20 -0
- models/.github/ISSUE_TEMPLATE/50-research-feature-request-issue.md +26 -0
- models/.github/ISSUE_TEMPLATE/60-questions-help-issue.md +14 -0
- models/.github/ISSUE_TEMPLATE/config.yml +1 -0
- models/.github/PULL_REQUEST_TEMPLATE.md +41 -0
- models/.github/README_TEMPLATE.md +122 -0
- models/.gitignore +98 -0
- models/AUTHORS +10 -0
- models/CODEOWNERS +61 -0
- models/CONTRIBUTING.md +10 -0
- models/ISSUES.md +24 -0
- models/LICENSE +203 -0
- models/README.md +39 -0
- models/official/LICENSE +203 -0
- models/official/README-TPU.md +25 -0
- models/official/README.md +142 -0
- models/official/__init__.py +0 -0
- models/official/__pycache__/__init__.cpython-39.pyc +0 -0
- models/official/benchmark/__init__.py +0 -0
- models/official/benchmark/benchmark_wrappers.py +97 -0
- models/official/benchmark/bert_benchmark.py +365 -0
- models/official/benchmark/bert_benchmark_utils.py +127 -0
- models/official/benchmark/bert_pretrain_benchmark.py +179 -0
- models/official/benchmark/bert_squad_benchmark.py +608 -0
- models/official/benchmark/datastore/schema/benchmark_metric.json +56 -0
- models/official/benchmark/datastore/schema/benchmark_run.json +368 -0
- models/official/benchmark/datastore/schema/benchmark_run_status.json +14 -0
- models/official/benchmark/keras_benchmark.py +98 -0
- models/official/benchmark/keras_cifar_benchmark.py +402 -0
- models/official/benchmark/keras_imagenet_benchmark.py +1724 -0
- models/official/benchmark/models/__init__.py +0 -0
- models/official/benchmark/models/cifar_preprocessing.py +159 -0
- models/official/benchmark/models/resnet_cifar_main.py +284 -0
- models/official/benchmark/models/resnet_cifar_model.py +262 -0
- models/official/benchmark/models/resnet_cifar_test.py +180 -0
- models/official/benchmark/models/resnet_imagenet_main.py +301 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Checkpoint/variables/variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
CTH_CODE_MAP.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
+
models/research/compression/image_encoder/example.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
models/research/deeplab/testing/pascal_voc_seg/val-00000-of-00001.tfrecord filter=lfs diff=lfs merge=lfs -text
|
40 |
+
models/research/lfads/synth_data/trained_itb/model-65000.meta filter=lfs diff=lfs merge=lfs -text
|
41 |
+
models/research/object_detection/g3doc/img/kites_with_segment_overlay.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
models/research/object_detection/test_images/image2.jpg filter=lfs diff=lfs merge=lfs -text
|
CTH_CODE_MAP.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a308da335ad4906fc42757542b4283d4025a29fe6afec47148b53187c74a42
|
3 |
+
size 218205006
|
CTH_Description.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CTH_WISE_DUTY_RATE.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Checkpoint/assets/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Checkpoint/keras_metadata.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bb0f1231a198848366566e176c8948dceab7b085b658d00550a83f784731f5
|
3 |
+
size 11535
|
Checkpoint/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0054848283b4fb79fefcebe71830bedb75e023ad04c5655adbc6a2ddd1e2c60
|
3 |
+
size 11477628
|
Checkpoint/variables/variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4ec6776ca3161577663eaa115fb9f965304670a1af8db7a37e9499a23082e67
|
3 |
+
size 1389095096
|
Checkpoint/variables/variables.index
ADDED
Binary file (46.6 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
import tensorflow_hub as hub
|
5 |
+
import sys
|
6 |
+
import random
|
7 |
+
sys.path.append('models')
|
8 |
+
from official.nlp.data import classifier_data_lib
|
9 |
+
from official.nlp.bert import tokenization
|
10 |
+
from official.nlp import optimization
|
11 |
+
tf.get_logger().setLevel('ERROR')
|
12 |
+
|
13 |
+
import math
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
config = tf.compat.v1.ConfigProto(
|
18 |
+
device_count = {'cpu': 0}
|
19 |
+
)
|
20 |
+
sess = tf.compat.v1.Session(config=config)
|
21 |
+
num_warmup_steps=1
|
22 |
+
num_train_steps=1
|
23 |
+
init_lr = 3e-5
|
24 |
+
optimizer = optimization.create_optimizer(init_lr=init_lr,
|
25 |
+
num_train_steps=num_train_steps,
|
26 |
+
num_warmup_steps=num_warmup_steps,
|
27 |
+
optimizer_type='adamw')
|
28 |
+
|
29 |
+
### Load Model
|
30 |
+
checkpoint_filepath=r'./Checkpoint'
|
31 |
+
model = tf.keras.models.load_model(checkpoint_filepath, custom_objects={'KerasLayer':hub.KerasLayer , 'AdamWeightDecay': optimizer})
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
df_report = pd.read_csv('./CTH_Description.csv')
|
36 |
+
df_report['CTH Code'] = df_report['CTH Code'].astype(str).str.zfill(8)
|
37 |
+
|
38 |
+
df_report_DUTY = pd.read_csv('./CTH_WISE_DUTY_RATE.csv')
|
39 |
+
df_report_DUTY['CTH'] = df_report_DUTY['CTH'].astype(str).str.zfill(8)
|
40 |
+
|
41 |
+
#print(df_report_DUTY)
|
42 |
+
|
43 |
+
df = pd.read_csv("./CTH_CODE_MAP.csv")
|
44 |
+
df['CTH'] = df['CTH'].astype(str).str.zfill(8)
|
45 |
+
df = df[['CTH', 'code']]
|
46 |
+
|
47 |
+
class_names=df[['CTH','code']].drop_duplicates(subset='CTH').sort_values(by='code',ignore_index=True)['CTH'].values.tolist()
|
48 |
+
label_list=list(range(0,len(class_names)))
|
49 |
+
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
|
50 |
+
train_batch_size = 32 # batch size ( 16 choosen to avoid Out-Of-Memory errors)
|
51 |
+
|
52 |
+
# Get BERT layer and tokenizer:
|
53 |
+
# More details here: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
|
54 |
+
bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4" , trainable = True)
|
55 |
+
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
|
56 |
+
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
|
57 |
+
tokenizer = tokenization.FullTokenizer(vocab_file , do_lower_case)
|
58 |
+
|
59 |
+
# This provides a function to convert each row to input features and label ( as required by BERT)
|
60 |
+
|
61 |
+
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
|
62 |
+
def to_feature(text, label, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer):
|
63 |
+
example = classifier_data_lib.InputExample(guid = None,
|
64 |
+
text_a = text.numpy(),
|
65 |
+
text_b = None,
|
66 |
+
label = label.numpy())
|
67 |
+
feature = classifier_data_lib.convert_single_example(0 , example , label_list , max_seq_length , tokenizer)
|
68 |
+
|
69 |
+
return (feature.input_ids , feature.input_mask , feature.segment_ids , feature.label_id)
|
70 |
+
|
71 |
+
|
72 |
+
def to_feature_map(text, label):
|
73 |
+
input_ids , input_mask , segment_ids , label_id = tf.py_function(to_feature , inp = [text , label],
|
74 |
+
Tout = [tf.int32 , tf.int32 , tf.int32 , tf.int32])
|
75 |
+
|
76 |
+
input_ids.set_shape([max_seq_length])
|
77 |
+
input_mask.set_shape([max_seq_length])
|
78 |
+
segment_ids.set_shape([max_seq_length])
|
79 |
+
label_id.set_shape([])
|
80 |
+
|
81 |
+
x = {
|
82 |
+
"input_word_ids": input_ids,
|
83 |
+
"input_mask": input_mask,
|
84 |
+
"input_type_ids": segment_ids
|
85 |
+
}
|
86 |
+
|
87 |
+
return(x,label_id)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
def print3largest(arr, arr_size):
|
92 |
+
third = first = second = -sys.maxsize
|
93 |
+
for i in range(0, arr_size):
|
94 |
+
|
95 |
+
if (arr[i] > first):
|
96 |
+
third = second
|
97 |
+
second = first
|
98 |
+
first = arr[i]
|
99 |
+
elif (arr[i] > second):
|
100 |
+
third = second
|
101 |
+
second = arr[i]
|
102 |
+
elif (arr[i] > third):
|
103 |
+
third = arr[i]
|
104 |
+
pred_value_max_three=[first, second, third]
|
105 |
+
return pred_value_max_three
|
106 |
+
|
107 |
+
def count_special_character(string):
|
108 |
+
special_char= 0
|
109 |
+
for i in range(len(string)):
|
110 |
+
ch = string[i]
|
111 |
+
if (string[i].isalpha()):
|
112 |
+
continue
|
113 |
+
else:
|
114 |
+
special_char += 1
|
115 |
+
|
116 |
+
if len(string)==special_char:
|
117 |
+
return False
|
118 |
+
else:
|
119 |
+
return True
|
120 |
+
|
121 |
+
def predict_CTH(txt):
|
122 |
+
print('Desc: ',txt)
|
123 |
+
if (txt!='') and len(txt)>=3 and (count_special_character(txt)):
|
124 |
+
valid_data = tf.data.Dataset.from_tensor_slices(([txt] , [1])) # 1 refers to 'entertainment' and 2 refers to 'sport'
|
125 |
+
valid_data = (valid_data.map(to_feature_map).batch(1))
|
126 |
+
preds = model.predict(valid_data)
|
127 |
+
predicted_values = tf.nn.softmax(preds)
|
128 |
+
arr = predicted_values.numpy().tolist()[0]
|
129 |
+
n = len(arr)
|
130 |
+
pred_value_max_three=print3largest(arr, n)
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
sum_all = pred_value_max_three[0] + pred_value_max_three[1] + pred_value_max_three[2]
|
135 |
+
|
136 |
+
val_1 = pred_value_max_three[0]/sum_all
|
137 |
+
val_2 = pred_value_max_three[1]/sum_all
|
138 |
+
val_3 = pred_value_max_three[2]/sum_all
|
139 |
+
|
140 |
+
#val_1= 97 #random.randrange(95, 99, 1)
|
141 |
+
#val_2=(pred_value_max_three[1]/pred_value_max_three[0])*val_1
|
142 |
+
#val_3=(pred_value_max_three[2]/pred_value_max_three[0])*val_1
|
143 |
+
|
144 |
+
if pred_value_max_three[0]<=0.000131:
|
145 |
+
Var_CTH=[]
|
146 |
+
Var_desc=[]
|
147 |
+
Var_duty=[]
|
148 |
+
pred_duty=''
|
149 |
+
pred_desc=''
|
150 |
+
pred_CTH=''
|
151 |
+
|
152 |
+
return{'Not a adequate description':float(1.0)}
|
153 |
+
else:
|
154 |
+
Var_CTH=[]
|
155 |
+
Var_desc=[]
|
156 |
+
Var_duty=[]
|
157 |
+
pred_duty=''
|
158 |
+
pred_desc=''
|
159 |
+
pred_CTH=''
|
160 |
+
|
161 |
+
|
162 |
+
for i in pred_value_max_three:
|
163 |
+
#i=pred_value_max_three[0]
|
164 |
+
predicted_code=np.where(predicted_values.numpy()==i)[1][0]
|
165 |
+
pred_CTH=df[df['code'] == predicted_code]['CTH'].iloc[0]
|
166 |
+
|
167 |
+
try:
|
168 |
+
pred_duty=df_report_DUTY[df_report_DUTY['CTH']==str(pred_CTH)]['DUTY_RATE'].iloc[0]
|
169 |
+
pred_desc=df_report[df_report['CTH Code']==str(pred_CTH)]['Concat Description'].iloc[0]
|
170 |
+
except:
|
171 |
+
pass
|
172 |
+
|
173 |
+
Var_CTH.append(pred_CTH)
|
174 |
+
Var_desc.append(pred_desc)
|
175 |
+
Var_duty.append(pred_duty)
|
176 |
+
|
177 |
+
P1 ='CTH: '+str(Var_CTH[0])+' Duty Rate(%): '+ str(Var_duty[0])
|
178 |
+
P2 ='CTH: '+str(Var_CTH[1])+' Duty Rate(%): '+ str(Var_duty[1])
|
179 |
+
P3 ='CTH: '+str(Var_CTH[2])+' Duty Rate(%): '+ str(Var_duty[2])
|
180 |
+
|
181 |
+
|
182 |
+
Q1='Desc: '+str(Var_desc[0])
|
183 |
+
Q2='Desc: '+str(Var_desc[1])
|
184 |
+
Q3='Desc: '+str(Var_desc[2])
|
185 |
+
|
186 |
+
|
187 |
+
return {str(P1):float(val_1),str(Q1):float(val_1),
|
188 |
+
str(P2):float(val_2),str(Q2):float(val_2),
|
189 |
+
str(P3):float(val_3),str(Q3):float(val_3),}
|
190 |
+
else:
|
191 |
+
return{'Enter Correct Description':float(1.0)}
|
192 |
+
|
193 |
+
|
194 |
+
input_txt=gr.Textbox(
|
195 |
+
label='Enter Your Product Descrption',
|
196 |
+
lines=3,
|
197 |
+
)
|
198 |
+
description="<p style='color:blue;text-align:justify;font-size:1vw;'>AdvaitBERT is modified version of BERT (Bidirectional Encoder Representation for Transformers), \
|
199 |
+
finetuned on the Text corpus of Indian Customs Declarations. It is trained for performing \
|
200 |
+
downstream tasks like automating the tariff classification and validation process of Customs \
|
201 |
+
declarations in realtime. This model may help Customs administration to efficiently use AI assisted \
|
202 |
+
NLP in realtime Customs process like Assessment, Post Clearance Audit, thereby highlighting classification \
|
203 |
+
inconsistencies and help in revenue augmentation.</a></p>"
|
204 |
+
|
205 |
+
title="<h1 style='color:green;text-align:center;font-size:2vw;'>AdvaitBERT </a></h1>"
|
206 |
+
article="<p style='color:black;text-align:right;font-size:1vw;'>Powered by NCTC </a></p>"
|
207 |
+
|
208 |
+
#css=".gradio-container {background-color: papayawhip}",
|
209 |
+
|
210 |
+
gr.Interface(
|
211 |
+
predict_CTH,
|
212 |
+
inputs=input_txt,
|
213 |
+
outputs="label",
|
214 |
+
interpretation="default",
|
215 |
+
description=description,
|
216 |
+
#live=True,
|
217 |
+
examples = ['200 SI/SI/SI LPO ALUMINIUM LIDS (QTY: 8820000 PCS/PRICE: 21.'],
|
218 |
+
title=title,
|
219 |
+
article=article,
|
220 |
+
).launch()
|
models/.github/ISSUE_TEMPLATE/00-official-bug-report-issue.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "[Official Model] Bug Report"
|
3 |
+
about: Use this template for reporting a bug for the “official” directory
|
4 |
+
labels: type:bug,models:official
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# Prerequisites
|
9 |
+
|
10 |
+
Please answer the following questions for yourself before submitting an issue.
|
11 |
+
|
12 |
+
- [ ] I am using the latest TensorFlow Model Garden release and TensorFlow 2.
|
13 |
+
- [ ] I am reporting the issue to the correct repository. (Model Garden official or research directory)
|
14 |
+
- [ ] I checked to make sure that this issue has not been filed already.
|
15 |
+
|
16 |
+
## 1. The entire URL of the file you are using
|
17 |
+
|
18 |
+
https://github.com/tensorflow/models/tree/master/official/...
|
19 |
+
|
20 |
+
## 2. Describe the bug
|
21 |
+
|
22 |
+
A clear and concise description of what the bug is.
|
23 |
+
|
24 |
+
## 3. Steps to reproduce
|
25 |
+
|
26 |
+
Steps to reproduce the behavior.
|
27 |
+
|
28 |
+
## 4. Expected behavior
|
29 |
+
|
30 |
+
A clear and concise description of what you expected to happen.
|
31 |
+
|
32 |
+
## 5. Additional context
|
33 |
+
|
34 |
+
Include any logs that would be helpful to diagnose the problem.
|
35 |
+
|
36 |
+
## 6. System information
|
37 |
+
|
38 |
+
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
|
39 |
+
- Mobile device name if the issue happens on a mobile device:
|
40 |
+
- TensorFlow installed from (source or binary):
|
41 |
+
- TensorFlow version (use command below):
|
42 |
+
- Python version:
|
43 |
+
- Bazel version (if compiling from source):
|
44 |
+
- GCC/Compiler version (if compiling from source):
|
45 |
+
- CUDA/cuDNN version:
|
46 |
+
- GPU model and memory:
|
47 |
+
|
48 |
+
<!--
|
49 |
+
Collect system information using our environment capture script.
|
50 |
+
https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh
|
51 |
+
|
52 |
+
You can also obtain the TensorFlow version with:
|
53 |
+
|
54 |
+
1. TensorFlow 1.0
|
55 |
+
`python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"`
|
56 |
+
|
57 |
+
2. TensorFlow 2.0
|
58 |
+
`python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)"`
|
59 |
+
-->
|
models/.github/ISSUE_TEMPLATE/10-official-documentation-issue.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "[Official Model] Documentation Issue"
|
3 |
+
about: Use this template for reporting a documentation issue for the “official” directory
|
4 |
+
labels: type:docs,models:official
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# Prerequisites
|
9 |
+
|
10 |
+
Please answer the following question for yourself before submitting an issue.
|
11 |
+
|
12 |
+
- [ ] I checked to make sure that this issue has not been filed already.
|
13 |
+
|
14 |
+
## 1. The entire URL of the documentation with the issue
|
15 |
+
|
16 |
+
https://github.com/tensorflow/models/tree/master/official/...
|
17 |
+
|
18 |
+
## 2. Describe the issue
|
19 |
+
|
20 |
+
A clear and concise description of what needs to be changed.
|
models/.github/ISSUE_TEMPLATE/20-official-feature-request-issue.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "[Official Model] Feature request"
|
3 |
+
about: Use this template for raising a feature request for the “official” directory
|
4 |
+
labels: type:feature,models:official
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# Prerequisites
|
9 |
+
|
10 |
+
Please answer the following question for yourself before submitting an issue.
|
11 |
+
|
12 |
+
- [ ] I checked to make sure that this feature has not been requested already.
|
13 |
+
|
14 |
+
## 1. The entire URL of the file you are using
|
15 |
+
|
16 |
+
https://github.com/tensorflow/models/tree/master/official/...
|
17 |
+
|
18 |
+
## 2. Describe the feature you request
|
19 |
+
|
20 |
+
A clear and concise description of what you want to happen.
|
21 |
+
|
22 |
+
## 3. Additional context
|
23 |
+
|
24 |
+
Add any other context about the feature request here.
|
25 |
+
|
26 |
+
## 4. Are you willing to contribute it? (Yes or No)
|
models/.github/ISSUE_TEMPLATE/30-research-bug-report-issue.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "[Research Model] Bug Report"
|
3 |
+
about: Use this template for reporting a bug for the “research” directory
|
4 |
+
labels: type:bug,models:research
|
5 |
+
|
6 |
+
---
|
7 |
+
# Prerequisites
|
8 |
+
|
9 |
+
Please answer the following questions for yourself before submitting an issue.
|
10 |
+
|
11 |
+
- [ ] I am using the latest TensorFlow Model Garden release and TensorFlow 2.
|
12 |
+
- [ ] I am reporting the issue to the correct repository. (Model Garden official or research directory)
|
13 |
+
- [ ] I checked to make sure that this issue has not already been filed.
|
14 |
+
|
15 |
+
## 1. The entire URL of the file you are using
|
16 |
+
|
17 |
+
https://github.com/tensorflow/models/tree/master/research/...
|
18 |
+
|
19 |
+
## 2. Describe the bug
|
20 |
+
|
21 |
+
A clear and concise description of what the bug is.
|
22 |
+
|
23 |
+
## 3. Steps to reproduce
|
24 |
+
|
25 |
+
Steps to reproduce the behavior.
|
26 |
+
|
27 |
+
## 4. Expected behavior
|
28 |
+
|
29 |
+
A clear and concise description of what you expected to happen.
|
30 |
+
|
31 |
+
## 5. Additional context
|
32 |
+
|
33 |
+
Include any logs that would be helpful to diagnose the problem.
|
34 |
+
|
35 |
+
## 6. System information
|
36 |
+
|
37 |
+
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
|
38 |
+
- Mobile device name if the issue happens on a mobile device:
|
39 |
+
- TensorFlow installed from (source or binary):
|
40 |
+
- TensorFlow version (use command below):
|
41 |
+
- Python version:
|
42 |
+
- Bazel version (if compiling from source):
|
43 |
+
- GCC/Compiler version (if compiling from source):
|
44 |
+
- CUDA/cuDNN version:
|
45 |
+
- GPU model and memory:
|
46 |
+
|
47 |
+
<!--
|
48 |
+
Collect system information using our environment capture script.
|
49 |
+
https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh
|
50 |
+
|
51 |
+
You can also obtain the TensorFlow version with:
|
52 |
+
|
53 |
+
1. TensorFlow 1.0
|
54 |
+
`python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"`
|
55 |
+
|
56 |
+
2. TensorFlow 2.0
|
57 |
+
`python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)"`
|
58 |
+
-->
|
models/.github/ISSUE_TEMPLATE/40-research-documentation-issue.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "[Research Model] Documentation Issue"
|
3 |
+
about: Use this template for reporting a documentation issue for the “research” directory
|
4 |
+
labels: type:docs,models:research
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# Prerequisites
|
9 |
+
|
10 |
+
Please answer the following question for yourself before submitting an issue.
|
11 |
+
|
12 |
+
- [ ] I checked to make sure that this issue has not been filed already.
|
13 |
+
|
14 |
+
## 1. The entire URL of the documentation with the issue
|
15 |
+
|
16 |
+
https://github.com/tensorflow/models/tree/master/research/...
|
17 |
+
|
18 |
+
## 2. Describe the issue
|
19 |
+
|
20 |
+
A clear and concise description of what needs to be changed.
|
models/.github/ISSUE_TEMPLATE/50-research-feature-request-issue.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "[Research Model] Feature Request"
|
3 |
+
about: Use this template for raising a feature request for the “research” directory
|
4 |
+
labels: type:feature,models:research
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# Prerequisites
|
9 |
+
|
10 |
+
Please answer the following question for yourself before submitting an issue.
|
11 |
+
|
12 |
+
- [ ] I checked to make sure that this feature has not been requested already.
|
13 |
+
|
14 |
+
## 1. The entire URL of the file you are using
|
15 |
+
|
16 |
+
https://github.com/tensorflow/models/tree/master/research/...
|
17 |
+
|
18 |
+
## 2. Describe the feature you request
|
19 |
+
|
20 |
+
A clear and concise description of what you want to happen.
|
21 |
+
|
22 |
+
## 3. Additional context
|
23 |
+
|
24 |
+
Add any other context about the feature request here.
|
25 |
+
|
26 |
+
## 4. Are you willing to contribute it? (Yes or No)
|
models/.github/ISSUE_TEMPLATE/60-questions-help-issue.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: Questions and Help
|
3 |
+
about: Use this template for Questions and Help.
|
4 |
+
labels: type:support
|
5 |
+
|
6 |
+
---
|
7 |
+
<!--
|
8 |
+
As per our GitHub Policy (https://github.com/tensorflow/models/blob/master/ISSUES.md), we only address code bugs, documentation issues, and feature requests on GitHub.
|
9 |
+
|
10 |
+
We will automatically close questions and help related issues.
|
11 |
+
|
12 |
+
Please go to Stack Overflow (http://stackoverflow.com/questions/tagged/tensorflow-model-garden) for questions and help.
|
13 |
+
|
14 |
+
-->
|
models/.github/ISSUE_TEMPLATE/config.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
blank_issues_enabled: false
|
models/.github/PULL_REQUEST_TEMPLATE.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Description
|
2 |
+
|
3 |
+
> :memo: Please include a summary of the change.
|
4 |
+
>
|
5 |
+
> * Please also include relevant motivation and context.
|
6 |
+
> * List any dependencies that are required for this change.
|
7 |
+
|
8 |
+
## Type of change
|
9 |
+
|
10 |
+
For a new feature or function, please create an issue first to discuss it
|
11 |
+
with us before submitting a pull request.
|
12 |
+
|
13 |
+
Note: Please delete options that are not relevant.
|
14 |
+
|
15 |
+
- [ ] Bug fix (non-breaking change which fixes an issue)
|
16 |
+
- [ ] Documentation update
|
17 |
+
- [ ] TensorFlow 2 migration
|
18 |
+
- [ ] New feature (non-breaking change which adds functionality)
|
19 |
+
- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
|
20 |
+
- [ ] A new research paper code implementation
|
21 |
+
- [ ] Other (Specify)
|
22 |
+
|
23 |
+
## Tests
|
24 |
+
|
25 |
+
> :memo: Please describe the tests that you ran to verify your changes.
|
26 |
+
>
|
27 |
+
> * Provide instructions so we can reproduce.
|
28 |
+
> * Please also list any relevant details for your test configuration.
|
29 |
+
|
30 |
+
**Test Configuration**:
|
31 |
+
|
32 |
+
## Checklist
|
33 |
+
|
34 |
+
- [ ] I have signed the [Contributor License Agreement](https://github.com/tensorflow/models/wiki/Contributor-License-Agreements).
|
35 |
+
- [ ] I have read [guidelines for pull request](https://github.com/tensorflow/models/wiki/Submitting-a-pull-request).
|
36 |
+
- [ ] My code follows the [coding guidelines](https://github.com/tensorflow/models/wiki/Coding-guidelines).
|
37 |
+
- [ ] I have performed a self [code review](https://github.com/tensorflow/models/wiki/Code-review) of my own code.
|
38 |
+
- [ ] I have commented my code, particularly in hard-to-understand areas.
|
39 |
+
- [ ] I have made corresponding changes to the documentation.
|
40 |
+
- [ ] My changes generate no new warnings.
|
41 |
+
- [ ] I have added tests that prove my fix is effective or that my feature works.
|
models/.github/README_TEMPLATE.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
> :memo: A README.md template for releasing a paper code implementation to a GitHub repository.
|
2 |
+
>
|
3 |
+
> * Template version: 1.0.2020.170
|
4 |
+
> * Please modify sections depending on needs.
|
5 |
+
|
6 |
+
# Model name, Paper title, or Project Name
|
7 |
+
|
8 |
+
> :memo: Add a badge for the ArXiv identifier of your paper (arXiv:YYMM.NNNNN)
|
9 |
+
|
10 |
+
[![Paper](http://img.shields.io/badge/Paper-arXiv.YYMM.NNNNN-B3181B?logo=arXiv)](https://arxiv.org/abs/...)
|
11 |
+
|
12 |
+
This repository is the official or unofficial implementation of the following paper.
|
13 |
+
|
14 |
+
* Paper title: [Paper Title](https://arxiv.org/abs/YYMM.NNNNN)
|
15 |
+
|
16 |
+
## Description
|
17 |
+
|
18 |
+
> :memo: Provide description of the model.
|
19 |
+
>
|
20 |
+
> * Provide brief information of the algorithms used.
|
21 |
+
> * Provide links for demos, blog posts, etc.
|
22 |
+
|
23 |
+
## History
|
24 |
+
|
25 |
+
> :memo: Provide a changelog.
|
26 |
+
|
27 |
+
## Authors or Maintainers
|
28 |
+
|
29 |
+
> :memo: Provide maintainer information.
|
30 |
+
|
31 |
+
* Full name ([@GitHub username](https://github.com/username))
|
32 |
+
* Full name ([@GitHub username](https://github.com/username))
|
33 |
+
|
34 |
+
## Table of Contents
|
35 |
+
|
36 |
+
> :memo: Provide a table of contents to help readers navigate a lengthy README document.
|
37 |
+
|
38 |
+
## Requirements
|
39 |
+
|
40 |
+
[![TensorFlow 2.1](https://img.shields.io/badge/TensorFlow-2.1-FF6F00?logo=tensorflow)](https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0)
|
41 |
+
[![Python 3.6](https://img.shields.io/badge/Python-3.6-3776AB)](https://www.python.org/downloads/release/python-360/)
|
42 |
+
|
43 |
+
> :memo: Provide details of the software required.
|
44 |
+
>
|
45 |
+
> * Add a `requirements.txt` file to the root directory for installing the necessary dependencies.
|
46 |
+
> * Describe how to install requirements using pip.
|
47 |
+
> * Alternatively, create INSTALL.md.
|
48 |
+
|
49 |
+
To install requirements:
|
50 |
+
|
51 |
+
```setup
|
52 |
+
pip install -r requirements.txt
|
53 |
+
```
|
54 |
+
|
55 |
+
## Results
|
56 |
+
|
57 |
+
> :memo: Provide a table with results. (e.g., accuracy, latency)
|
58 |
+
>
|
59 |
+
> * Provide links to the pre-trained models (checkpoint, SavedModel files).
|
60 |
+
> * Publish TensorFlow SavedModel files on TensorFlow Hub (tfhub.dev) if possible.
|
61 |
+
> * Add links to [TensorBoard.dev](https://tensorboard.dev/) for visualizing metrics.
|
62 |
+
>
|
63 |
+
> An example table for image classification results
|
64 |
+
>
|
65 |
+
> ### Image Classification
|
66 |
+
>
|
67 |
+
> | Model name | Download | Top 1 Accuracy | Top 5 Accuracy |
|
68 |
+
> |------------|----------|----------------|----------------|
|
69 |
+
> | Model name | [Checkpoint](https://drive.google.com/...), [SavedModel](https://tfhub.dev/...) | xx% | xx% |
|
70 |
+
|
71 |
+
## Dataset
|
72 |
+
|
73 |
+
> :memo: Provide information of the dataset used.
|
74 |
+
|
75 |
+
## Training
|
76 |
+
|
77 |
+
> :memo: Provide training information.
|
78 |
+
>
|
79 |
+
> * Provide details for preprocessing, hyperparameters, random seeds, and environment.
|
80 |
+
> * Provide a command line example for training.
|
81 |
+
|
82 |
+
Please run this command line for training.
|
83 |
+
|
84 |
+
```shell
|
85 |
+
python3 ...
|
86 |
+
```
|
87 |
+
|
88 |
+
## Evaluation
|
89 |
+
|
90 |
+
> :memo: Provide an evaluation script with details of how to reproduce results.
|
91 |
+
>
|
92 |
+
> * Describe data preprocessing / postprocessing steps.
|
93 |
+
> * Provide a command line example for evaluation.
|
94 |
+
|
95 |
+
Please run this command line for evaluation.
|
96 |
+
|
97 |
+
```shell
|
98 |
+
python3 ...
|
99 |
+
```
|
100 |
+
|
101 |
+
## References
|
102 |
+
|
103 |
+
> :memo: Provide links to references.
|
104 |
+
|
105 |
+
## License
|
106 |
+
|
107 |
+
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
|
108 |
+
|
109 |
+
> :memo: Place your license text in a file named LICENSE in the root of the repository.
|
110 |
+
>
|
111 |
+
> * Include information about your license.
|
112 |
+
> * Reference: [Adding a license to a repository](https://help.github.com/en/github/building-a-strong-community/adding-a-license-to-a-repository)
|
113 |
+
|
114 |
+
This project is licensed under the terms of the **Apache License 2.0**.
|
115 |
+
|
116 |
+
## Citation
|
117 |
+
|
118 |
+
> :memo: Make your repository citable.
|
119 |
+
>
|
120 |
+
> * Reference: [Making Your Code Citable](https://guides.github.com/activities/citable-code/)
|
121 |
+
|
122 |
+
If you want to cite this repository in your research paper, please use the following information.
|
models/.gitignore
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
env/
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
*.egg-info/
|
24 |
+
.installed.cfg
|
25 |
+
*.egg
|
26 |
+
|
27 |
+
# PyInstaller
|
28 |
+
# Usually these files are written by a python script from a template
|
29 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
30 |
+
*.manifest
|
31 |
+
*.spec
|
32 |
+
|
33 |
+
# Installer logs
|
34 |
+
pip-log.txt
|
35 |
+
pip-delete-this-directory.txt
|
36 |
+
|
37 |
+
# Unit test / coverage reports
|
38 |
+
htmlcov/
|
39 |
+
.tox/
|
40 |
+
.coverage
|
41 |
+
.coverage.*
|
42 |
+
.cache
|
43 |
+
nosetests.xml
|
44 |
+
coverage.xml
|
45 |
+
*,cover
|
46 |
+
.hypothesis/
|
47 |
+
|
48 |
+
# Translations
|
49 |
+
*.mo
|
50 |
+
*.pot
|
51 |
+
|
52 |
+
# Django stuff:
|
53 |
+
*.log
|
54 |
+
local_settings.py
|
55 |
+
|
56 |
+
# Flask stuff:
|
57 |
+
instance/
|
58 |
+
.webassets-cache
|
59 |
+
|
60 |
+
# Scrapy stuff:
|
61 |
+
.scrapy
|
62 |
+
|
63 |
+
# Sphinx documentation
|
64 |
+
docs/_build/
|
65 |
+
|
66 |
+
# PyBuilder
|
67 |
+
target/
|
68 |
+
|
69 |
+
# IPython Notebook
|
70 |
+
.ipynb_checkpoints
|
71 |
+
|
72 |
+
# pyenv
|
73 |
+
.python-version
|
74 |
+
|
75 |
+
# mypy
|
76 |
+
.mypy_cache
|
77 |
+
|
78 |
+
# celery beat schedule file
|
79 |
+
celerybeat-schedule
|
80 |
+
|
81 |
+
# dotenv
|
82 |
+
.env
|
83 |
+
|
84 |
+
# virtualenv
|
85 |
+
venv/
|
86 |
+
ENV/
|
87 |
+
|
88 |
+
# Spyder project settings
|
89 |
+
.spyderproject
|
90 |
+
|
91 |
+
# Rope project settings
|
92 |
+
.ropeproject
|
93 |
+
|
94 |
+
# PyCharm
|
95 |
+
.idea/
|
96 |
+
|
97 |
+
# For mac
|
98 |
+
.DS_Store
|
models/AUTHORS
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is the official list of authors for copyright purposes.
|
2 |
+
# This file is distinct from the CONTRIBUTORS files.
|
3 |
+
# See the latter for an explanation.
|
4 |
+
|
5 |
+
# Names should be added to this file as:
|
6 |
+
# Name or Organization <email address>
|
7 |
+
# The email address is not required for organizations.
|
8 |
+
|
9 |
+
Google Inc.
|
10 |
+
David Dao <daviddao@broad.mit.edu>
|
models/CODEOWNERS
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* @tensorflow/tf-garden-team @tensorflow/tf-model-garden-team
|
2 |
+
/official/ @rachellj218 @saberkun @jaeyounkim
|
3 |
+
/official/nlp/ @saberkun @chenGitHuber @lehougoogle @rachellj218
|
4 |
+
/official/vision/ @pengchongjin @xianzhidu @yeqingli @arashwan @saberkun @rachellj218
|
5 |
+
/research/adv_imagenet_models/ @alexeykurakin
|
6 |
+
/research/adversarial_crypto/ @dave-andersen
|
7 |
+
/research/adversarial_logit_pairing/ @alexeykurakin
|
8 |
+
/research/adversarial_text/ @rsepassi @a-dai
|
9 |
+
/research/attention_ocr/ @xavigibert
|
10 |
+
/research/audioset/ @plakal @dpwe
|
11 |
+
/research/autoaugment/* @barretzoph
|
12 |
+
/research/autoencoders/ @snurkabill
|
13 |
+
/research/brain_coder/ @danabo
|
14 |
+
/research/cognitive_mapping_and_planning/ @s-gupta
|
15 |
+
/research/compression/ @nmjohn
|
16 |
+
/research/cvt_text/ @clarkkev @lmthang
|
17 |
+
/research/deep_contextual_bandits/ @rikel
|
18 |
+
/research/deep_speech/ @yhliang2018
|
19 |
+
/research/deeplab/ @aquariusjay @yknzhu @gpapan
|
20 |
+
/research/delf/ @andrefaraujo
|
21 |
+
/research/domain_adaptation/ @bousmalis @dmrd
|
22 |
+
/research/efficient-hrl/ @ofirnachum
|
23 |
+
/research/feelvos/ @pvoigtlaender @yuningchai @aquariusjay
|
24 |
+
/research/fivo/ @dieterichlawson
|
25 |
+
/research/global_objectives/ @mackeya-google
|
26 |
+
/research/im2txt/ @cshallue
|
27 |
+
/research/inception/ @shlens @vincentvanhoucke
|
28 |
+
/research/keypointnet/ @mnorouzi
|
29 |
+
/research/learned_optimizer/ @olganw @nirum
|
30 |
+
/research/learning_to_remember_rare_events/ @lukaszkaiser @ofirnachum
|
31 |
+
/research/learning_unsupervised_learning/ @lukemetz @nirum
|
32 |
+
/research/lexnet_nc/ @vered1986 @waterson
|
33 |
+
/research/lfads/ @jazcollins @sussillo
|
34 |
+
/research/lm_1b/ @oriolvinyals @panyx0718
|
35 |
+
/research/lm_commonsense/ @thtrieu
|
36 |
+
/research/lstm_object_detection/ @yinxiaoli @yongzhe2160
|
37 |
+
/research/marco/ @vincentvanhoucke
|
38 |
+
/research/maskgan/ @liamb315 @a-dai
|
39 |
+
/research/namignizer/ @knathanieltucker
|
40 |
+
/research/neural_gpu/ @lukaszkaiser
|
41 |
+
/research/neural_programmer/ @arvind2505
|
42 |
+
/research/next_frame_prediction/ @panyx0718
|
43 |
+
/research/object_detection/ @jch1 @tombstone @pkulzc
|
44 |
+
/research/pcl_rl/ @ofirnachum
|
45 |
+
/research/ptn/ @xcyan @arkanath @hellojas @honglaklee
|
46 |
+
/research/qa_kg/ @yuyuz
|
47 |
+
/research/real_nvp/ @laurent-dinh
|
48 |
+
/research/rebar/ @gjtucker
|
49 |
+
/research/sentiment_analysis/ @sculd
|
50 |
+
/research/seq2species/ @apbusia @depristo
|
51 |
+
/research/skip_thoughts/ @cshallue
|
52 |
+
/research/slim/ @sguada @marksandler2
|
53 |
+
/research/steve/ @buckman-google
|
54 |
+
/research/street/ @theraysmith
|
55 |
+
/research/struct2depth/ @aneliaangelova
|
56 |
+
/research/swivel/ @waterson
|
57 |
+
/research/tcn/ @coreylynch @sermanet
|
58 |
+
/research/textsum/ @panyx0718 @peterjliu
|
59 |
+
/research/transformer/ @daviddao
|
60 |
+
/research/vid2depth/ @rezama
|
61 |
+
/research/video_prediction/ @cbfinn
|
models/CONTRIBUTING.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# How to contribute
|
2 |
+
|
3 |
+
![Contributors](https://img.shields.io/github/contributors/tensorflow/models)
|
4 |
+
|
5 |
+
We encourage you to contribute to the TensorFlow Model Garden.
|
6 |
+
|
7 |
+
Please read our [guidelines](../../wiki/How-to-contribute) for details.
|
8 |
+
|
9 |
+
**NOTE**: Only [code owners](./CODEOWNERS) are allowed to merge a pull request.
|
10 |
+
Please contact the code owners of each model to merge your pull request.
|
models/ISSUES.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# If you open a GitHub issue, here is our policy.
|
2 |
+
|
3 |
+
* It must be a **bug**, a **feature request**, or a significant problem
|
4 |
+
with **documentation**.
|
5 |
+
* Please send a pull request instead for small documentation fixes.
|
6 |
+
* The required form must be filled out.
|
7 |
+
* The issue should be related to the repository it is created in.
|
8 |
+
|
9 |
+
General help and support should be sought on [Stack Overflow](https://stackoverflow.com/questions/tagged/tensorflow-model-garden) or other non-GitHub channels.
|
10 |
+
|
11 |
+
[![](https://img.shields.io/stackexchange/stackoverflow/t/tensorflow-model-garden)](https://stackoverflow.com/questions/tagged/tensorflow-model-garden)
|
12 |
+
|
13 |
+
TensorFlow developers respond to issues.
|
14 |
+
We want to focus on work that benefits the whole community such as fixing bugs
|
15 |
+
and adding new features.
|
16 |
+
It helps us to address bugs and feature requests in a timely manner.
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
Please understand that research models in the [research directory](https://github.com/tensorflow/models/tree/master/research)
|
21 |
+
included in this repository are experimental and research-style code.
|
22 |
+
They are not officially supported by the TensorFlow team.
|
23 |
+
|
24 |
+
|
models/LICENSE
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2016 The TensorFlow Authors. All rights reserved.
|
2 |
+
|
3 |
+
Apache License
|
4 |
+
Version 2.0, January 2004
|
5 |
+
http://www.apache.org/licenses/
|
6 |
+
|
7 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
8 |
+
|
9 |
+
1. Definitions.
|
10 |
+
|
11 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
12 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
13 |
+
|
14 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
15 |
+
the copyright owner that is granting the License.
|
16 |
+
|
17 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
18 |
+
other entities that control, are controlled by, or are under common
|
19 |
+
control with that entity. For the purposes of this definition,
|
20 |
+
"control" means (i) the power, direct or indirect, to cause the
|
21 |
+
direction or management of such entity, whether by contract or
|
22 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
23 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
24 |
+
|
25 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
26 |
+
exercising permissions granted by this License.
|
27 |
+
|
28 |
+
"Source" form shall mean the preferred form for making modifications,
|
29 |
+
including but not limited to software source code, documentation
|
30 |
+
source, and configuration files.
|
31 |
+
|
32 |
+
"Object" form shall mean any form resulting from mechanical
|
33 |
+
transformation or translation of a Source form, including but
|
34 |
+
not limited to compiled object code, generated documentation,
|
35 |
+
and conversions to other media types.
|
36 |
+
|
37 |
+
"Work" shall mean the work of authorship, whether in Source or
|
38 |
+
Object form, made available under the License, as indicated by a
|
39 |
+
copyright notice that is included in or attached to the work
|
40 |
+
(an example is provided in the Appendix below).
|
41 |
+
|
42 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
43 |
+
form, that is based on (or derived from) the Work and for which the
|
44 |
+
editorial revisions, annotations, elaborations, or other modifications
|
45 |
+
represent, as a whole, an original work of authorship. For the purposes
|
46 |
+
of this License, Derivative Works shall not include works that remain
|
47 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
48 |
+
the Work and Derivative Works thereof.
|
49 |
+
|
50 |
+
"Contribution" shall mean any work of authorship, including
|
51 |
+
the original version of the Work and any modifications or additions
|
52 |
+
to that Work or Derivative Works thereof, that is intentionally
|
53 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
54 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
55 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
56 |
+
means any form of electronic, verbal, or written communication sent
|
57 |
+
to the Licensor or its representatives, including but not limited to
|
58 |
+
communication on electronic mailing lists, source code control systems,
|
59 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
60 |
+
Licensor for the purpose of discussing and improving the Work, but
|
61 |
+
excluding communication that is conspicuously marked or otherwise
|
62 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
63 |
+
|
64 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
65 |
+
on behalf of whom a Contribution has been received by Licensor and
|
66 |
+
subsequently incorporated within the Work.
|
67 |
+
|
68 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
69 |
+
this License, each Contributor hereby grants to You a perpetual,
|
70 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
71 |
+
copyright license to reproduce, prepare Derivative Works of,
|
72 |
+
publicly display, publicly perform, sublicense, and distribute the
|
73 |
+
Work and such Derivative Works in Source or Object form.
|
74 |
+
|
75 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
76 |
+
this License, each Contributor hereby grants to You a perpetual,
|
77 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
78 |
+
(except as stated in this section) patent license to make, have made,
|
79 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
80 |
+
where such license applies only to those patent claims licensable
|
81 |
+
by such Contributor that are necessarily infringed by their
|
82 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
83 |
+
with the Work to which such Contribution(s) was submitted. If You
|
84 |
+
institute patent litigation against any entity (including a
|
85 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
86 |
+
or a Contribution incorporated within the Work constitutes direct
|
87 |
+
or contributory patent infringement, then any patent licenses
|
88 |
+
granted to You under this License for that Work shall terminate
|
89 |
+
as of the date such litigation is filed.
|
90 |
+
|
91 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
92 |
+
Work or Derivative Works thereof in any medium, with or without
|
93 |
+
modifications, and in Source or Object form, provided that You
|
94 |
+
meet the following conditions:
|
95 |
+
|
96 |
+
(a) You must give any other recipients of the Work or
|
97 |
+
Derivative Works a copy of this License; and
|
98 |
+
|
99 |
+
(b) You must cause any modified files to carry prominent notices
|
100 |
+
stating that You changed the files; and
|
101 |
+
|
102 |
+
(c) You must retain, in the Source form of any Derivative Works
|
103 |
+
that You distribute, all copyright, patent, trademark, and
|
104 |
+
attribution notices from the Source form of the Work,
|
105 |
+
excluding those notices that do not pertain to any part of
|
106 |
+
the Derivative Works; and
|
107 |
+
|
108 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
109 |
+
distribution, then any Derivative Works that You distribute must
|
110 |
+
include a readable copy of the attribution notices contained
|
111 |
+
within such NOTICE file, excluding those notices that do not
|
112 |
+
pertain to any part of the Derivative Works, in at least one
|
113 |
+
of the following places: within a NOTICE text file distributed
|
114 |
+
as part of the Derivative Works; within the Source form or
|
115 |
+
documentation, if provided along with the Derivative Works; or,
|
116 |
+
within a display generated by the Derivative Works, if and
|
117 |
+
wherever such third-party notices normally appear. The contents
|
118 |
+
of the NOTICE file are for informational purposes only and
|
119 |
+
do not modify the License. You may add Your own attribution
|
120 |
+
notices within Derivative Works that You distribute, alongside
|
121 |
+
or as an addendum to the NOTICE text from the Work, provided
|
122 |
+
that such additional attribution notices cannot be construed
|
123 |
+
as modifying the License.
|
124 |
+
|
125 |
+
You may add Your own copyright statement to Your modifications and
|
126 |
+
may provide additional or different license terms and conditions
|
127 |
+
for use, reproduction, or distribution of Your modifications, or
|
128 |
+
for any such Derivative Works as a whole, provided Your use,
|
129 |
+
reproduction, and distribution of the Work otherwise complies with
|
130 |
+
the conditions stated in this License.
|
131 |
+
|
132 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
133 |
+
any Contribution intentionally submitted for inclusion in the Work
|
134 |
+
by You to the Licensor shall be under the terms and conditions of
|
135 |
+
this License, without any additional terms or conditions.
|
136 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
137 |
+
the terms of any separate license agreement you may have executed
|
138 |
+
with Licensor regarding such Contributions.
|
139 |
+
|
140 |
+
6. Trademarks. This License does not grant permission to use the trade
|
141 |
+
names, trademarks, service marks, or product names of the Licensor,
|
142 |
+
except as required for reasonable and customary use in describing the
|
143 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
144 |
+
|
145 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
146 |
+
agreed to in writing, Licensor provides the Work (and each
|
147 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
148 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
149 |
+
implied, including, without limitation, any warranties or conditions
|
150 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
151 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
152 |
+
appropriateness of using or redistributing the Work and assume any
|
153 |
+
risks associated with Your exercise of permissions under this License.
|
154 |
+
|
155 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
156 |
+
whether in tort (including negligence), contract, or otherwise,
|
157 |
+
unless required by applicable law (such as deliberate and grossly
|
158 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
159 |
+
liable to You for damages, including any direct, indirect, special,
|
160 |
+
incidental, or consequential damages of any character arising as a
|
161 |
+
result of this License or out of the use or inability to use the
|
162 |
+
Work (including but not limited to damages for loss of goodwill,
|
163 |
+
work stoppage, computer failure or malfunction, or any and all
|
164 |
+
other commercial damages or losses), even if such Contributor
|
165 |
+
has been advised of the possibility of such damages.
|
166 |
+
|
167 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
168 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
169 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
170 |
+
or other liability obligations and/or rights consistent with this
|
171 |
+
License. However, in accepting such obligations, You may act only
|
172 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
173 |
+
of any other Contributor, and only if You agree to indemnify,
|
174 |
+
defend, and hold each Contributor harmless for any liability
|
175 |
+
incurred by, or claims asserted against, such Contributor by reason
|
176 |
+
of your accepting any such warranty or additional liability.
|
177 |
+
|
178 |
+
END OF TERMS AND CONDITIONS
|
179 |
+
|
180 |
+
APPENDIX: How to apply the Apache License to your work.
|
181 |
+
|
182 |
+
To apply the Apache License to your work, attach the following
|
183 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
184 |
+
replaced with your own identifying information. (Don't include
|
185 |
+
the brackets!) The text should be enclosed in the appropriate
|
186 |
+
comment syntax for the file format. We also recommend that a
|
187 |
+
file or class name and description of purpose be included on the
|
188 |
+
same "printed page" as the copyright notice for easier
|
189 |
+
identification within third-party archives.
|
190 |
+
|
191 |
+
Copyright 2016, The Authors.
|
192 |
+
|
193 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
194 |
+
you may not use this file except in compliance with the License.
|
195 |
+
You may obtain a copy of the License at
|
196 |
+
|
197 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
198 |
+
|
199 |
+
Unless required by applicable law or agreed to in writing, software
|
200 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
202 |
+
See the License for the specific language governing permissions and
|
203 |
+
limitations under the License.
|
models/README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
![Logo](https://storage.googleapis.com/model_garden_artifacts/TF_Model_Garden.png)
|
2 |
+
|
3 |
+
# Welcome to the Model Garden for TensorFlow
|
4 |
+
|
5 |
+
The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users
|
6 |
+
can take full advantage of TensorFlow for their research and product development.
|
7 |
+
|
8 |
+
| Directory | Description |
|
9 |
+
|-----------|-------------|
|
10 |
+
| [official](official) | • A collection of example implementations for SOTA models using the latest TensorFlow 2's high-level APIs<br />• Officially maintained, supported, and kept up to date with the latest TensorFlow 2 APIs by TensorFlow<br />• Reasonably optimized for fast performance while still being easy to read |
|
11 |
+
| [research](research) | • A collection of research model implementations in TensorFlow 1 or 2 by researchers<br />• Maintained and supported by researchers |
|
12 |
+
| [community](community) | • A curated list of the GitHub repositories with machine learning models and implementations powered by TensorFlow 2 |
|
13 |
+
|
14 |
+
## [Announcements](https://github.com/tensorflow/models/wiki/Announcements)
|
15 |
+
|
16 |
+
| Date | News |
|
17 |
+
|------|------|
|
18 |
+
| June 17, 2020 | [Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection](https://github.com/tensorflow/models/tree/master/research/object_detection#june-17th-2020) released
|
19 |
+
| May 21, 2020 | [Unifying Deep Local and Global Features for Image Search (DELG)](https://github.com/tensorflow/models/tree/master/research/delf#delg) code released
|
20 |
+
| May 19, 2020 | [MobileDets: Searching for Object Detection Architectures for Mobile Accelerators](https://github.com/tensorflow/models/tree/master/research/object_detection#may-19th-2020) released
|
21 |
+
| May 7, 2020 | [MnasFPN with MobileNet-V2 backbone](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md#mobile-models) released for object detection
|
22 |
+
| May 1, 2020 | [DELF: DEep Local Features](https://github.com/tensorflow/models/tree/master/research/delf) updated to support TensorFlow 2.1
|
23 |
+
| March 31, 2020 | [Introducing the Model Garden for TensorFlow 2](https://blog.tensorflow.org/2020/03/introducing-model-garden-for-tensorflow-2.html) ([Tweet](https://twitter.com/TensorFlow/status/1245029834633297921)) |
|
24 |
+
|
25 |
+
## [Milestones](https://github.com/tensorflow/models/milestones)
|
26 |
+
|
27 |
+
| Date | Milestone |
|
28 |
+
|------|-----------|
|
29 |
+
| July 7, 2020 | [![GitHub milestone](https://img.shields.io/github/milestones/progress/tensorflow/models/1)](https://github.com/tensorflow/models/milestone/1) |
|
30 |
+
|
31 |
+
## Contributions
|
32 |
+
|
33 |
+
[![help wanted:paper implementation](https://img.shields.io/github/issues/tensorflow/models/help%20wanted%3Apaper%20implementation)](https://github.com/tensorflow/models/labels/help%20wanted%3Apaper%20implementation)
|
34 |
+
|
35 |
+
If you want to contribute, please review the [contribution guidelines](https://github.com/tensorflow/models/wiki/How-to-contribute).
|
36 |
+
|
37 |
+
## License
|
38 |
+
|
39 |
+
[Apache License 2.0](LICENSE)
|
models/official/LICENSE
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2015 The TensorFlow Authors. All rights reserved.
|
2 |
+
|
3 |
+
Apache License
|
4 |
+
Version 2.0, January 2004
|
5 |
+
http://www.apache.org/licenses/
|
6 |
+
|
7 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
8 |
+
|
9 |
+
1. Definitions.
|
10 |
+
|
11 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
12 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
13 |
+
|
14 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
15 |
+
the copyright owner that is granting the License.
|
16 |
+
|
17 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
18 |
+
other entities that control, are controlled by, or are under common
|
19 |
+
control with that entity. For the purposes of this definition,
|
20 |
+
"control" means (i) the power, direct or indirect, to cause the
|
21 |
+
direction or management of such entity, whether by contract or
|
22 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
23 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
24 |
+
|
25 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
26 |
+
exercising permissions granted by this License.
|
27 |
+
|
28 |
+
"Source" form shall mean the preferred form for making modifications,
|
29 |
+
including but not limited to software source code, documentation
|
30 |
+
source, and configuration files.
|
31 |
+
|
32 |
+
"Object" form shall mean any form resulting from mechanical
|
33 |
+
transformation or translation of a Source form, including but
|
34 |
+
not limited to compiled object code, generated documentation,
|
35 |
+
and conversions to other media types.
|
36 |
+
|
37 |
+
"Work" shall mean the work of authorship, whether in Source or
|
38 |
+
Object form, made available under the License, as indicated by a
|
39 |
+
copyright notice that is included in or attached to the work
|
40 |
+
(an example is provided in the Appendix below).
|
41 |
+
|
42 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
43 |
+
form, that is based on (or derived from) the Work and for which the
|
44 |
+
editorial revisions, annotations, elaborations, or other modifications
|
45 |
+
represent, as a whole, an original work of authorship. For the purposes
|
46 |
+
of this License, Derivative Works shall not include works that remain
|
47 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
48 |
+
the Work and Derivative Works thereof.
|
49 |
+
|
50 |
+
"Contribution" shall mean any work of authorship, including
|
51 |
+
the original version of the Work and any modifications or additions
|
52 |
+
to that Work or Derivative Works thereof, that is intentionally
|
53 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
54 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
55 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
56 |
+
means any form of electronic, verbal, or written communication sent
|
57 |
+
to the Licensor or its representatives, including but not limited to
|
58 |
+
communication on electronic mailing lists, source code control systems,
|
59 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
60 |
+
Licensor for the purpose of discussing and improving the Work, but
|
61 |
+
excluding communication that is conspicuously marked or otherwise
|
62 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
63 |
+
|
64 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
65 |
+
on behalf of whom a Contribution has been received by Licensor and
|
66 |
+
subsequently incorporated within the Work.
|
67 |
+
|
68 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
69 |
+
this License, each Contributor hereby grants to You a perpetual,
|
70 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
71 |
+
copyright license to reproduce, prepare Derivative Works of,
|
72 |
+
publicly display, publicly perform, sublicense, and distribute the
|
73 |
+
Work and such Derivative Works in Source or Object form.
|
74 |
+
|
75 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
76 |
+
this License, each Contributor hereby grants to You a perpetual,
|
77 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
78 |
+
(except as stated in this section) patent license to make, have made,
|
79 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
80 |
+
where such license applies only to those patent claims licensable
|
81 |
+
by such Contributor that are necessarily infringed by their
|
82 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
83 |
+
with the Work to which such Contribution(s) was submitted. If You
|
84 |
+
institute patent litigation against any entity (including a
|
85 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
86 |
+
or a Contribution incorporated within the Work constitutes direct
|
87 |
+
or contributory patent infringement, then any patent licenses
|
88 |
+
granted to You under this License for that Work shall terminate
|
89 |
+
as of the date such litigation is filed.
|
90 |
+
|
91 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
92 |
+
Work or Derivative Works thereof in any medium, with or without
|
93 |
+
modifications, and in Source or Object form, provided that You
|
94 |
+
meet the following conditions:
|
95 |
+
|
96 |
+
(a) You must give any other recipients of the Work or
|
97 |
+
Derivative Works a copy of this License; and
|
98 |
+
|
99 |
+
(b) You must cause any modified files to carry prominent notices
|
100 |
+
stating that You changed the files; and
|
101 |
+
|
102 |
+
(c) You must retain, in the Source form of any Derivative Works
|
103 |
+
that You distribute, all copyright, patent, trademark, and
|
104 |
+
attribution notices from the Source form of the Work,
|
105 |
+
excluding those notices that do not pertain to any part of
|
106 |
+
the Derivative Works; and
|
107 |
+
|
108 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
109 |
+
distribution, then any Derivative Works that You distribute must
|
110 |
+
include a readable copy of the attribution notices contained
|
111 |
+
within such NOTICE file, excluding those notices that do not
|
112 |
+
pertain to any part of the Derivative Works, in at least one
|
113 |
+
of the following places: within a NOTICE text file distributed
|
114 |
+
as part of the Derivative Works; within the Source form or
|
115 |
+
documentation, if provided along with the Derivative Works; or,
|
116 |
+
within a display generated by the Derivative Works, if and
|
117 |
+
wherever such third-party notices normally appear. The contents
|
118 |
+
of the NOTICE file are for informational purposes only and
|
119 |
+
do not modify the License. You may add Your own attribution
|
120 |
+
notices within Derivative Works that You distribute, alongside
|
121 |
+
or as an addendum to the NOTICE text from the Work, provided
|
122 |
+
that such additional attribution notices cannot be construed
|
123 |
+
as modifying the License.
|
124 |
+
|
125 |
+
You may add Your own copyright statement to Your modifications and
|
126 |
+
may provide additional or different license terms and conditions
|
127 |
+
for use, reproduction, or distribution of Your modifications, or
|
128 |
+
for any such Derivative Works as a whole, provided Your use,
|
129 |
+
reproduction, and distribution of the Work otherwise complies with
|
130 |
+
the conditions stated in this License.
|
131 |
+
|
132 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
133 |
+
any Contribution intentionally submitted for inclusion in the Work
|
134 |
+
by You to the Licensor shall be under the terms and conditions of
|
135 |
+
this License, without any additional terms or conditions.
|
136 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
137 |
+
the terms of any separate license agreement you may have executed
|
138 |
+
with Licensor regarding such Contributions.
|
139 |
+
|
140 |
+
6. Trademarks. This License does not grant permission to use the trade
|
141 |
+
names, trademarks, service marks, or product names of the Licensor,
|
142 |
+
except as required for reasonable and customary use in describing the
|
143 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
144 |
+
|
145 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
146 |
+
agreed to in writing, Licensor provides the Work (and each
|
147 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
148 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
149 |
+
implied, including, without limitation, any warranties or conditions
|
150 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
151 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
152 |
+
appropriateness of using or redistributing the Work and assume any
|
153 |
+
risks associated with Your exercise of permissions under this License.
|
154 |
+
|
155 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
156 |
+
whether in tort (including negligence), contract, or otherwise,
|
157 |
+
unless required by applicable law (such as deliberate and grossly
|
158 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
159 |
+
liable to You for damages, including any direct, indirect, special,
|
160 |
+
incidental, or consequential damages of any character arising as a
|
161 |
+
result of this License or out of the use or inability to use the
|
162 |
+
Work (including but not limited to damages for loss of goodwill,
|
163 |
+
work stoppage, computer failure or malfunction, or any and all
|
164 |
+
other commercial damages or losses), even if such Contributor
|
165 |
+
has been advised of the possibility of such damages.
|
166 |
+
|
167 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
168 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
169 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
170 |
+
or other liability obligations and/or rights consistent with this
|
171 |
+
License. However, in accepting such obligations, You may act only
|
172 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
173 |
+
of any other Contributor, and only if You agree to indemnify,
|
174 |
+
defend, and hold each Contributor harmless for any liability
|
175 |
+
incurred by, or claims asserted against, such Contributor by reason
|
176 |
+
of your accepting any such warranty or additional liability.
|
177 |
+
|
178 |
+
END OF TERMS AND CONDITIONS
|
179 |
+
|
180 |
+
APPENDIX: How to apply the Apache License to your work.
|
181 |
+
|
182 |
+
To apply the Apache License to your work, attach the following
|
183 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
184 |
+
replaced with your own identifying information. (Don't include
|
185 |
+
the brackets!) The text should be enclosed in the appropriate
|
186 |
+
comment syntax for the file format. We also recommend that a
|
187 |
+
file or class name and description of purpose be included on the
|
188 |
+
same "printed page" as the copyright notice for easier
|
189 |
+
identification within third-party archives.
|
190 |
+
|
191 |
+
Copyright 2015, The TensorFlow Authors.
|
192 |
+
|
193 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
194 |
+
you may not use this file except in compliance with the License.
|
195 |
+
You may obtain a copy of the License at
|
196 |
+
|
197 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
198 |
+
|
199 |
+
Unless required by applicable law or agreed to in writing, software
|
200 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
202 |
+
See the License for the specific language governing permissions and
|
203 |
+
limitations under the License.
|
models/official/README-TPU.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Offically Supported TensorFlow 2.1+ Models on Cloud TPU
|
2 |
+
|
3 |
+
## Natural Language Processing
|
4 |
+
|
5 |
+
* [bert](nlp/bert): A powerful pre-trained language representation model:
|
6 |
+
BERT, which stands for Bidirectional Encoder Representations from
|
7 |
+
Transformers.
|
8 |
+
[BERT FineTuning with Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/bert-2.x) provides step by step instructions on Cloud TPU training. You can look [Bert MNLI Tensorboard.dev metrics](https://tensorboard.dev/experiment/LijZ1IrERxKALQfr76gndA) for MNLI fine tuning task.
|
9 |
+
* [transformer](nlp/transformer): A transformer model to translate the WMT
|
10 |
+
English to German dataset.
|
11 |
+
[Training transformer on Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/transformer-2.x) for step by step instructions on Cloud TPU training.
|
12 |
+
|
13 |
+
## Computer Vision
|
14 |
+
|
15 |
+
* [efficientnet](vision/image_classification): A family of convolutional
|
16 |
+
neural networks that scale by balancing network depth, width, and
|
17 |
+
resolution and can be used to classify ImageNet's dataset of 1000 classes.
|
18 |
+
See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/KnaWjrq5TXGfv0NW5m7rpg/#scalars).
|
19 |
+
* [mnist](vision/image_classification): A basic model to classify digits
|
20 |
+
from the MNIST dataset. See [Running MNIST on Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/mnist-2.x) tutorial and [Tensorboard.dev metrics](https://tensorboard.dev/experiment/mIah5lppTASvrHqWrdr6NA).
|
21 |
+
* [mask-rcnn](vision/detection): An object detection and instance segmentation model. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/LH7k0fMsRwqUAcE09o9kPA).
|
22 |
+
* [resnet](vision/image_classification): A deep residual network that can
|
23 |
+
be used to classify ImageNet's dataset of 1000 classes.
|
24 |
+
See [Training ResNet on Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/resnet-2.x) tutorial and [Tensorboard.dev metrics](https://tensorboard.dev/experiment/CxlDK8YMRrSpYEGtBRpOhg).
|
25 |
+
* [retinanet](vision/detection): A fast and powerful object detector. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/b8NRnWU3TqG6Rw0UxueU6Q).
|
models/official/README.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
![Logo](https://storage.googleapis.com/model_garden_artifacts/TF_Model_Garden.png)
|
2 |
+
|
3 |
+
# TensorFlow Official Models
|
4 |
+
|
5 |
+
The TensorFlow official models are a collection of models
|
6 |
+
that use TensorFlow’s high-level APIs.
|
7 |
+
They are intended to be well-maintained, tested, and kept up to date
|
8 |
+
with the latest TensorFlow API.
|
9 |
+
|
10 |
+
They should also be reasonably optimized for fast performance while still
|
11 |
+
being easy to read.
|
12 |
+
These models are used as end-to-end tests, ensuring that the models run
|
13 |
+
with the same or improved speed and performance with each new TensorFlow build.
|
14 |
+
|
15 |
+
## More models to come!
|
16 |
+
|
17 |
+
The team is actively developing new models.
|
18 |
+
In the near future, we will add:
|
19 |
+
|
20 |
+
* State-of-the-art language understanding models:
|
21 |
+
More members in Transformer family
|
22 |
+
* Start-of-the-art image classification models:
|
23 |
+
EfficientNet, MnasNet, and variants
|
24 |
+
* A set of excellent objection detection models.
|
25 |
+
|
26 |
+
## Table of Contents
|
27 |
+
|
28 |
+
- [Models and Implementations](#models-and-implementations)
|
29 |
+
* [Computer Vision](#computer-vision)
|
30 |
+
+ [Image Classification](#image-classification)
|
31 |
+
+ [Object Detection and Segmentation](#object-detection-and-segmentation)
|
32 |
+
* [Natural Language Processing](#natural-language-processing)
|
33 |
+
* [Recommendation](#recommendation)
|
34 |
+
- [How to get started with the official models](#how-to-get-started-with-the-official-models)
|
35 |
+
|
36 |
+
## Models and Implementations
|
37 |
+
|
38 |
+
### Computer Vision
|
39 |
+
|
40 |
+
#### Image Classification
|
41 |
+
|
42 |
+
| Model | Reference (Paper) |
|
43 |
+
|-------|-------------------|
|
44 |
+
| [MNIST](vision/image_classification) | A basic model to classify digits from the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) |
|
45 |
+
| [ResNet](vision/image_classification) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) |
|
46 |
+
| [EfficientNet](vision/image_classification) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) |
|
47 |
+
|
48 |
+
#### Object Detection and Segmentation
|
49 |
+
|
50 |
+
| Model | Reference (Paper) |
|
51 |
+
|-------|-------------------|
|
52 |
+
| [RetinaNet](vision/detection) | [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) |
|
53 |
+
| [Mask R-CNN](vision/detection) | [Mask R-CNN](https://arxiv.org/abs/1703.06870) |
|
54 |
+
| [ShapeMask](vision/detection) | [ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors](https://arxiv.org/abs/1904.03239) |
|
55 |
+
|
56 |
+
### Natural Language Processing
|
57 |
+
|
58 |
+
| Model | Reference (Paper) |
|
59 |
+
|-------|-------------------|
|
60 |
+
| [ALBERT (A Lite BERT)](nlp/albert) | [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) |
|
61 |
+
| [BERT (Bidirectional Encoder Representations from Transformers)](nlp/bert) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) |
|
62 |
+
| [NHNet (News Headline generation model)](nlp/nhnet) | [Generating Representative Headlines for News Stories](https://arxiv.org/abs/2001.09386) |
|
63 |
+
| [Transformer](nlp/transformer) | [Attention Is All You Need](https://arxiv.org/abs/1706.03762) |
|
64 |
+
| [XLNet](nlp/xlnet) | [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) |
|
65 |
+
|
66 |
+
### Recommendation
|
67 |
+
|
68 |
+
| Model | Reference (Paper) |
|
69 |
+
|-------|-------------------|
|
70 |
+
| [NCF](recommendation) | [Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031) |
|
71 |
+
|
72 |
+
## How to get started with the official models
|
73 |
+
|
74 |
+
* The models in the master branch are developed using TensorFlow 2,
|
75 |
+
and they target the TensorFlow [nightly binaries](https://github.com/tensorflow/tensorflow#installation)
|
76 |
+
built from the
|
77 |
+
[master branch of TensorFlow](https://github.com/tensorflow/tensorflow/tree/master).
|
78 |
+
* The stable versions targeting releases of TensorFlow are available
|
79 |
+
as tagged branches or [downloadable releases](https://github.com/tensorflow/models/releases).
|
80 |
+
* Model repository version numbers match the target TensorFlow release,
|
81 |
+
such that
|
82 |
+
[release v2.2.0](https://github.com/tensorflow/models/releases/tag/v2.2.0)
|
83 |
+
are compatible with
|
84 |
+
[TensorFlow v2.2.0](https://github.com/tensorflow/tensorflow/releases/tag/v2.2.0).
|
85 |
+
|
86 |
+
Please follow the below steps before running models in this repository.
|
87 |
+
|
88 |
+
### Requirements
|
89 |
+
|
90 |
+
* The latest TensorFlow Model Garden release and TensorFlow 2
|
91 |
+
* If you are on a version of TensorFlow earlier than 2.2, please
|
92 |
+
upgrade your TensorFlow to [the latest TensorFlow 2](https://www.tensorflow.org/install/).
|
93 |
+
|
94 |
+
```shell
|
95 |
+
pip3 install tf-nightly
|
96 |
+
```
|
97 |
+
|
98 |
+
### Installation
|
99 |
+
|
100 |
+
#### Method 1: Install the TensorFlow Model Garden pip package
|
101 |
+
|
102 |
+
**tf-models-nightly** is the nightly Model Garden package
|
103 |
+
created daily automatically. pip will install all models
|
104 |
+
and dependencies automatically.
|
105 |
+
|
106 |
+
```shell
|
107 |
+
pip install tf-models-nightly
|
108 |
+
```
|
109 |
+
|
110 |
+
Please check out our [example](colab/fine_tuning_bert.ipynb)
|
111 |
+
to learn how to use a PIP package.
|
112 |
+
|
113 |
+
#### Method 2: Clone the source
|
114 |
+
|
115 |
+
1. Clone the GitHub repository:
|
116 |
+
|
117 |
+
```shell
|
118 |
+
git clone https://github.com/tensorflow/models.git
|
119 |
+
```
|
120 |
+
|
121 |
+
2. Add the top-level ***/models*** folder to the Python path.
|
122 |
+
|
123 |
+
```shell
|
124 |
+
export PYTHONPATH=$PYTHONPATH:/path/to/models
|
125 |
+
```
|
126 |
+
|
127 |
+
If you are using a Colab notebook, please set the Python path with os.environ.
|
128 |
+
|
129 |
+
```python
|
130 |
+
import os
|
131 |
+
os.environ['PYTHONPATH'] += ":/path/to/models"
|
132 |
+
```
|
133 |
+
|
134 |
+
3. Install other dependencies
|
135 |
+
|
136 |
+
```shell
|
137 |
+
pip3 install --user -r official/requirements.txt
|
138 |
+
```
|
139 |
+
|
140 |
+
## Contributions
|
141 |
+
|
142 |
+
If you want to contribute, please review the [contribution guidelines](https://github.com/tensorflow/models/wiki/How-to-contribute).
|
models/official/__init__.py
ADDED
File without changes
|
models/official/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (139 Bytes). View file
|
|
models/official/benchmark/__init__.py
ADDED
File without changes
|
models/official/benchmark/benchmark_wrappers.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
"""Utils to annotate and trace benchmarks."""
|
17 |
+
|
18 |
+
from __future__ import absolute_import
|
19 |
+
from __future__ import division
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
from absl import flags
|
23 |
+
from absl import logging
|
24 |
+
from absl.testing import flagsaver
|
25 |
+
|
26 |
+
FLAGS = flags.FLAGS
|
27 |
+
|
28 |
+
flags.DEFINE_multi_string(
|
29 |
+
'benchmark_method_flags', None,
|
30 |
+
'Optional list of runtime flags of the form key=value. Specify '
|
31 |
+
'multiple times to specify different flags. These will override the FLAGS '
|
32 |
+
'object directly after hardcoded settings in individual benchmark methods '
|
33 |
+
'before they call _run_and_report benchmark. Example if we set '
|
34 |
+
'--benchmark_method_flags=train_steps=10 and a benchmark method hardcodes '
|
35 |
+
'FLAGS.train_steps=10000 and later calls _run_and_report_benchmark, '
|
36 |
+
'it\'ll only run for 10 steps. This is useful for '
|
37 |
+
'debugging/profiling workflows.')
|
38 |
+
|
39 |
+
|
40 |
+
def enable_runtime_flags(decorated_func):
|
41 |
+
"""Sets attributes from --benchmark_method_flags for method execution.
|
42 |
+
|
43 |
+
@enable_runtime_flags decorator temporarily adds flags passed in via
|
44 |
+
--benchmark_method_flags and runs the decorated function in that context.
|
45 |
+
|
46 |
+
A user can set --benchmark_method_flags=train_steps=5 to run the benchmark
|
47 |
+
method in the snippet below with FLAGS.train_steps=5 for debugging (without
|
48 |
+
modifying the benchmark code).
|
49 |
+
|
50 |
+
class ModelBenchmark():
|
51 |
+
|
52 |
+
@benchmark_wrappers.enable_runtime_flags
|
53 |
+
def _run_and_report_benchmark(self):
|
54 |
+
# run benchmark ...
|
55 |
+
# report benchmark results ...
|
56 |
+
|
57 |
+
def benchmark_method(self):
|
58 |
+
FLAGS.train_steps = 1000
|
59 |
+
...
|
60 |
+
self._run_and_report_benchmark()
|
61 |
+
|
62 |
+
Args:
|
63 |
+
decorated_func: The method that runs the benchmark after previous setup
|
64 |
+
execution that set some flags.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
new_func: The same method which executes in a temporary context where flag
|
68 |
+
overrides from --benchmark_method_flags are active.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def runner(*args, **kwargs):
|
72 |
+
"""Creates a temporary context to activate --benchmark_method_flags."""
|
73 |
+
if FLAGS.benchmark_method_flags:
|
74 |
+
saved_flag_values = flagsaver.save_flag_values()
|
75 |
+
for key_value in FLAGS.benchmark_method_flags:
|
76 |
+
key, value = key_value.split('=', 1)
|
77 |
+
try:
|
78 |
+
numeric_float = float(value)
|
79 |
+
numeric_int = int(numeric_float)
|
80 |
+
if abs(numeric_int) == abs(numeric_float):
|
81 |
+
flag_value = numeric_int
|
82 |
+
else:
|
83 |
+
flag_value = numeric_float
|
84 |
+
except ValueError:
|
85 |
+
flag_value = value
|
86 |
+
logging.info('Setting --%s=%s', key, flag_value)
|
87 |
+
setattr(FLAGS, key, flag_value)
|
88 |
+
else:
|
89 |
+
saved_flag_values = None
|
90 |
+
try:
|
91 |
+
result = decorated_func(*args, **kwargs)
|
92 |
+
return result
|
93 |
+
finally:
|
94 |
+
if saved_flag_values:
|
95 |
+
flagsaver.restore_flag_values(saved_flag_values)
|
96 |
+
|
97 |
+
return runner
|
models/official/benchmark/bert_benchmark.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Executes BERT benchmarks and accuracy tests."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import functools
|
22 |
+
import json
|
23 |
+
import math
|
24 |
+
import os
|
25 |
+
import time
|
26 |
+
|
27 |
+
# pylint: disable=g-bad-import-order
|
28 |
+
from absl import flags
|
29 |
+
from absl.testing import flagsaver
|
30 |
+
import tensorflow as tf
|
31 |
+
# pylint: enable=g-bad-import-order
|
32 |
+
|
33 |
+
from official.benchmark import bert_benchmark_utils as benchmark_utils
|
34 |
+
from official.benchmark import owner_utils
|
35 |
+
from official.nlp.bert import configs
|
36 |
+
from official.nlp.bert import run_classifier
|
37 |
+
from official.utils.misc import distribution_utils
|
38 |
+
from official.benchmark import benchmark_wrappers
|
39 |
+
|
40 |
+
# pylint: disable=line-too-long
|
41 |
+
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
|
42 |
+
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_train.tf_record'
|
43 |
+
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_eval.tf_record'
|
44 |
+
CLASSIFIER_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_meta_data'
|
45 |
+
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
|
46 |
+
# pylint: enable=line-too-long
|
47 |
+
|
48 |
+
TMP_DIR = os.getenv('TMPDIR')
|
49 |
+
FLAGS = flags.FLAGS
|
50 |
+
|
51 |
+
|
52 |
+
class BertClassifyBenchmarkBase(benchmark_utils.BertBenchmarkBase):
|
53 |
+
"""Base class to hold methods common to test classes in the module."""
|
54 |
+
|
55 |
+
def __init__(self, output_dir=None, tpu=None):
|
56 |
+
super(BertClassifyBenchmarkBase, self).__init__(output_dir, tpu=tpu)
|
57 |
+
self.num_epochs = None
|
58 |
+
self.num_steps_per_epoch = None
|
59 |
+
FLAGS.steps_per_loop = 1
|
60 |
+
|
61 |
+
@flagsaver.flagsaver
|
62 |
+
def _run_bert_classifier(self, callbacks=None, use_ds=True):
|
63 |
+
"""Starts BERT classification task."""
|
64 |
+
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
|
65 |
+
input_meta_data = json.loads(reader.read().decode('utf-8'))
|
66 |
+
|
67 |
+
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
|
68 |
+
epochs = self.num_epochs if self.num_epochs else FLAGS.num_train_epochs
|
69 |
+
if self.num_steps_per_epoch:
|
70 |
+
steps_per_epoch = self.num_steps_per_epoch
|
71 |
+
else:
|
72 |
+
train_data_size = input_meta_data['train_data_size']
|
73 |
+
steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
|
74 |
+
warmup_steps = int(epochs * steps_per_epoch * 0.1)
|
75 |
+
eval_steps = int(
|
76 |
+
math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
|
77 |
+
if self.tpu:
|
78 |
+
strategy = distribution_utils.get_distribution_strategy(
|
79 |
+
distribution_strategy='tpu', tpu_address=self.tpu)
|
80 |
+
else:
|
81 |
+
strategy = distribution_utils.get_distribution_strategy(
|
82 |
+
distribution_strategy='mirrored' if use_ds else 'off',
|
83 |
+
num_gpus=self.num_gpus)
|
84 |
+
|
85 |
+
max_seq_length = input_meta_data['max_seq_length']
|
86 |
+
train_input_fn = run_classifier.get_dataset_fn(
|
87 |
+
FLAGS.train_data_path,
|
88 |
+
max_seq_length,
|
89 |
+
FLAGS.train_batch_size,
|
90 |
+
is_training=True)
|
91 |
+
eval_input_fn = run_classifier.get_dataset_fn(
|
92 |
+
FLAGS.eval_data_path,
|
93 |
+
max_seq_length,
|
94 |
+
FLAGS.eval_batch_size,
|
95 |
+
is_training=False)
|
96 |
+
_, summary = run_classifier.run_bert_classifier(
|
97 |
+
strategy,
|
98 |
+
bert_config,
|
99 |
+
input_meta_data,
|
100 |
+
FLAGS.model_dir,
|
101 |
+
epochs,
|
102 |
+
steps_per_epoch,
|
103 |
+
FLAGS.steps_per_loop,
|
104 |
+
eval_steps,
|
105 |
+
warmup_steps,
|
106 |
+
FLAGS.learning_rate,
|
107 |
+
FLAGS.init_checkpoint,
|
108 |
+
train_input_fn,
|
109 |
+
eval_input_fn,
|
110 |
+
training_callbacks=False,
|
111 |
+
custom_callbacks=callbacks)
|
112 |
+
return summary
|
113 |
+
|
114 |
+
|
115 |
+
class BertClassifyBenchmarkReal(BertClassifyBenchmarkBase):
|
116 |
+
"""Short benchmark performance tests for BERT model.
|
117 |
+
|
118 |
+
Tests BERT classification performance in different GPU, TPU configurations.
|
119 |
+
The naming convention of below test cases follow
|
120 |
+
`benchmark_(number of gpus)_gpu_(dataset type)` for GPUs and
|
121 |
+
`benchmark_(topology)_tpu_(dataset type)` for TPUs.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
|
125 |
+
super(BertClassifyBenchmarkReal, self).__init__(
|
126 |
+
output_dir=output_dir, tpu=tpu)
|
127 |
+
|
128 |
+
self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
|
129 |
+
self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
|
130 |
+
self.bert_config_file = MODEL_CONFIG_FILE_PATH
|
131 |
+
self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
|
132 |
+
|
133 |
+
# Since we only care about performance metrics, we limit
|
134 |
+
# the number of training steps and epochs to prevent unnecessarily
|
135 |
+
# long tests.
|
136 |
+
self.num_steps_per_epoch = 100
|
137 |
+
self.num_epochs = 1
|
138 |
+
|
139 |
+
@benchmark_wrappers.enable_runtime_flags
|
140 |
+
def _run_and_report_benchmark(self,
|
141 |
+
training_summary_path,
|
142 |
+
min_accuracy=0,
|
143 |
+
max_accuracy=1,
|
144 |
+
use_ds=True):
|
145 |
+
"""Starts BERT performance benchmark test."""
|
146 |
+
start_time_sec = time.time()
|
147 |
+
summary = self._run_bert_classifier(
|
148 |
+
callbacks=[self.timer_callback], use_ds=use_ds)
|
149 |
+
wall_time_sec = time.time() - start_time_sec
|
150 |
+
|
151 |
+
# Since we do not load from any pretrained checkpoints, we ignore all
|
152 |
+
# accuracy metrics.
|
153 |
+
summary.pop('eval_metrics', None)
|
154 |
+
summary['start_time_sec'] = start_time_sec
|
155 |
+
|
156 |
+
super(BertClassifyBenchmarkReal, self)._report_benchmark(
|
157 |
+
stats=summary,
|
158 |
+
wall_time_sec=wall_time_sec,
|
159 |
+
min_accuracy=min_accuracy,
|
160 |
+
max_accuracy=max_accuracy)
|
161 |
+
|
162 |
+
def benchmark_1_gpu_mrpc(self):
|
163 |
+
"""Test BERT model performance with 1 GPU."""
|
164 |
+
|
165 |
+
self._setup()
|
166 |
+
self.num_gpus = 1
|
167 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc')
|
168 |
+
FLAGS.train_data_path = self.train_data_path
|
169 |
+
FLAGS.eval_data_path = self.eval_data_path
|
170 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
171 |
+
FLAGS.bert_config_file = self.bert_config_file
|
172 |
+
FLAGS.train_batch_size = 4
|
173 |
+
FLAGS.eval_batch_size = 4
|
174 |
+
|
175 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
176 |
+
'summaries/training_summary.txt')
|
177 |
+
self._run_and_report_benchmark(summary_path)
|
178 |
+
|
179 |
+
def benchmark_1_gpu_mrpc_xla(self):
|
180 |
+
"""Test BERT model performance with 1 GPU."""
|
181 |
+
|
182 |
+
self._setup()
|
183 |
+
self.num_gpus = 1
|
184 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_xla')
|
185 |
+
FLAGS.train_data_path = self.train_data_path
|
186 |
+
FLAGS.eval_data_path = self.eval_data_path
|
187 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
188 |
+
FLAGS.bert_config_file = self.bert_config_file
|
189 |
+
FLAGS.train_batch_size = 4
|
190 |
+
FLAGS.eval_batch_size = 4
|
191 |
+
FLAGS.enable_xla = True
|
192 |
+
|
193 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
194 |
+
'summaries/training_summary.txt')
|
195 |
+
self._run_and_report_benchmark(summary_path)
|
196 |
+
|
197 |
+
def benchmark_1_gpu_mrpc_no_dist_strat(self):
|
198 |
+
"""Test BERT model performance with 1 GPU, no distribution strategy."""
|
199 |
+
|
200 |
+
self._setup()
|
201 |
+
self.num_gpus = 1
|
202 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_no_dist_strat')
|
203 |
+
FLAGS.train_data_path = self.train_data_path
|
204 |
+
FLAGS.eval_data_path = self.eval_data_path
|
205 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
206 |
+
FLAGS.bert_config_file = self.bert_config_file
|
207 |
+
FLAGS.train_batch_size = 4
|
208 |
+
FLAGS.eval_batch_size = 4
|
209 |
+
|
210 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
211 |
+
'summaries/training_summary.txt')
|
212 |
+
self._run_and_report_benchmark(summary_path, use_ds=False)
|
213 |
+
|
214 |
+
@owner_utils.Owner('tf-model-garden')
|
215 |
+
def benchmark_8_gpu_mrpc(self):
|
216 |
+
"""Test BERT model performance with 8 GPUs."""
|
217 |
+
|
218 |
+
self._setup()
|
219 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
|
220 |
+
FLAGS.train_data_path = self.train_data_path
|
221 |
+
FLAGS.eval_data_path = self.eval_data_path
|
222 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
223 |
+
FLAGS.bert_config_file = self.bert_config_file
|
224 |
+
|
225 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
226 |
+
'summaries/training_summary.txt')
|
227 |
+
self._run_and_report_benchmark(summary_path)
|
228 |
+
|
229 |
+
def benchmark_1_gpu_amp_mrpc_no_dist_strat(self):
|
230 |
+
"""Performance for 1 GPU no DS with automatic mixed precision."""
|
231 |
+
self._setup()
|
232 |
+
self.num_gpus = 1
|
233 |
+
FLAGS.model_dir = self._get_model_dir(
|
234 |
+
'benchmark_1_gpu_amp_mrpc_no_dist_strat')
|
235 |
+
FLAGS.train_data_path = self.train_data_path
|
236 |
+
FLAGS.eval_data_path = self.eval_data_path
|
237 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
238 |
+
FLAGS.bert_config_file = self.bert_config_file
|
239 |
+
FLAGS.train_batch_size = 4
|
240 |
+
FLAGS.eval_batch_size = 4
|
241 |
+
FLAGS.dtype = 'fp16'
|
242 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
243 |
+
|
244 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
245 |
+
'summaries/training_summary.txt')
|
246 |
+
self._run_and_report_benchmark(summary_path, use_ds=False)
|
247 |
+
|
248 |
+
def benchmark_8_gpu_amp_mrpc(self):
|
249 |
+
"""Test BERT model performance with 8 GPUs with automatic mixed precision."""
|
250 |
+
|
251 |
+
self._setup()
|
252 |
+
self.num_gpus = 8
|
253 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_mrpc')
|
254 |
+
FLAGS.train_data_path = self.train_data_path
|
255 |
+
FLAGS.eval_data_path = self.eval_data_path
|
256 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
257 |
+
FLAGS.bert_config_file = self.bert_config_file
|
258 |
+
FLAGS.train_batch_size = 32
|
259 |
+
FLAGS.eval_batch_size = 32
|
260 |
+
FLAGS.dtype = 'fp16'
|
261 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
262 |
+
|
263 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
264 |
+
'summaries/training_summary.txt')
|
265 |
+
self._run_and_report_benchmark(summary_path, use_ds=False)
|
266 |
+
|
267 |
+
@owner_utils.Owner('tf-model-garden')
|
268 |
+
def benchmark_2x2_tpu_mrpc(self):
|
269 |
+
"""Test BERT model performance with 2x2 TPU."""
|
270 |
+
|
271 |
+
self._setup()
|
272 |
+
FLAGS.steps_per_loop = 50
|
273 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_mrpc')
|
274 |
+
FLAGS.train_data_path = self.train_data_path
|
275 |
+
FLAGS.eval_data_path = self.eval_data_path
|
276 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
277 |
+
FLAGS.bert_config_file = self.bert_config_file
|
278 |
+
FLAGS.train_batch_size = 32
|
279 |
+
FLAGS.eval_batch_size = 32
|
280 |
+
|
281 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
282 |
+
'summaries/training_summary.txt')
|
283 |
+
self._run_and_report_benchmark(summary_path, use_ds=False)
|
284 |
+
|
285 |
+
|
286 |
+
class BertClassifyAccuracy(BertClassifyBenchmarkBase):
|
287 |
+
"""Short accuracy test for BERT model.
|
288 |
+
|
289 |
+
Tests BERT classification task model accuracy. The naming
|
290 |
+
convention of below test cases follow
|
291 |
+
`benchmark_(number of gpus)_gpu_(dataset type)` format.
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
|
295 |
+
self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
|
296 |
+
self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
|
297 |
+
self.bert_config_file = MODEL_CONFIG_FILE_PATH
|
298 |
+
self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
|
299 |
+
self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH
|
300 |
+
|
301 |
+
super(BertClassifyAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
|
302 |
+
|
303 |
+
@benchmark_wrappers.enable_runtime_flags
|
304 |
+
def _run_and_report_benchmark(self,
|
305 |
+
training_summary_path,
|
306 |
+
min_accuracy=0.84,
|
307 |
+
max_accuracy=0.88):
|
308 |
+
"""Starts BERT accuracy benchmark test."""
|
309 |
+
|
310 |
+
start_time_sec = time.time()
|
311 |
+
summary = self._run_bert_classifier(callbacks=[self.timer_callback])
|
312 |
+
wall_time_sec = time.time() - start_time_sec
|
313 |
+
|
314 |
+
super(BertClassifyAccuracy, self)._report_benchmark(
|
315 |
+
stats=summary,
|
316 |
+
wall_time_sec=wall_time_sec,
|
317 |
+
min_accuracy=min_accuracy,
|
318 |
+
max_accuracy=max_accuracy)
|
319 |
+
|
320 |
+
def _setup(self):
|
321 |
+
super(BertClassifyAccuracy, self)._setup()
|
322 |
+
FLAGS.train_data_path = self.train_data_path
|
323 |
+
FLAGS.eval_data_path = self.eval_data_path
|
324 |
+
FLAGS.input_meta_data_path = self.input_meta_data_path
|
325 |
+
FLAGS.bert_config_file = self.bert_config_file
|
326 |
+
FLAGS.init_checkpoint = self.pretrained_checkpoint_path
|
327 |
+
|
328 |
+
@owner_utils.Owner('tf-model-garden')
|
329 |
+
def benchmark_8_gpu_mrpc(self):
|
330 |
+
"""Run BERT model accuracy test with 8 GPUs.
|
331 |
+
|
332 |
+
Due to comparatively small cardinality of MRPC dataset, training
|
333 |
+
accuracy metric has high variance between trainings. As so, we
|
334 |
+
set the wide range of allowed accuracy (84% to 88%).
|
335 |
+
"""
|
336 |
+
self._setup()
|
337 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
|
338 |
+
|
339 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
340 |
+
'summaries/training_summary.txt')
|
341 |
+
self._run_and_report_benchmark(summary_path)
|
342 |
+
|
343 |
+
def benchmark_8_gpu_mrpc_xla(self):
|
344 |
+
"""Run BERT model accuracy test with 8 GPUs with XLA."""
|
345 |
+
self._setup()
|
346 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc_xla')
|
347 |
+
FLAGS.enable_xla = True
|
348 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
349 |
+
'summaries/training_summary.txt')
|
350 |
+
self._run_and_report_benchmark(summary_path)
|
351 |
+
|
352 |
+
@owner_utils.Owner('tf-model-garden')
|
353 |
+
def benchmark_2x2_tpu_mrpc(self):
|
354 |
+
"""Run BERT model accuracy test on 2x2 TPU."""
|
355 |
+
self._setup()
|
356 |
+
FLAGS.steps_per_loop = 50
|
357 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_mrpc')
|
358 |
+
|
359 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
360 |
+
'summaries/training_summary.txt')
|
361 |
+
self._run_and_report_benchmark(summary_path)
|
362 |
+
|
363 |
+
|
364 |
+
if __name__ == '__main__':
|
365 |
+
tf.test.main()
|
models/official/benchmark/bert_benchmark_utils.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Utility functions or classes shared between BERT benchmarks."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import time
|
22 |
+
|
23 |
+
# pylint: disable=g-bad-import-order
|
24 |
+
import numpy as np
|
25 |
+
from absl import flags
|
26 |
+
import tensorflow as tf
|
27 |
+
# pylint: enable=g-bad-import-order
|
28 |
+
|
29 |
+
from official.utils.flags import core as flags_core
|
30 |
+
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
|
31 |
+
|
32 |
+
FLAGS = flags.FLAGS
|
33 |
+
|
34 |
+
|
35 |
+
class BenchmarkTimerCallback(tf.keras.callbacks.Callback):
|
36 |
+
"""Callback that records time it takes to run each batch."""
|
37 |
+
|
38 |
+
def __init__(self, num_batches_to_skip=10):
|
39 |
+
super(BenchmarkTimerCallback, self).__init__()
|
40 |
+
self.batch_start_times = {}
|
41 |
+
self.batch_stop_times = {}
|
42 |
+
|
43 |
+
def on_batch_begin(self, batch, logs=None):
|
44 |
+
self.batch_start_times[batch] = time.time()
|
45 |
+
|
46 |
+
def on_batch_end(self, batch, logs=None):
|
47 |
+
# If there are multiple steps_per_loop, the end batch index will not be the
|
48 |
+
# same as the starting index. Use the last starting index instead.
|
49 |
+
if batch not in self.batch_start_times:
|
50 |
+
batch = max(self.batch_start_times.keys())
|
51 |
+
|
52 |
+
self.batch_stop_times[batch] = time.time()
|
53 |
+
|
54 |
+
def get_examples_per_sec(self, batch_size, num_batches_to_skip=1):
|
55 |
+
batch_durations = []
|
56 |
+
for batch in self.batch_start_times:
|
57 |
+
if batch in self.batch_stop_times and batch >= num_batches_to_skip:
|
58 |
+
batch_durations.append(self.batch_stop_times[batch] -
|
59 |
+
self.batch_start_times[batch])
|
60 |
+
return batch_size / np.mean(batch_durations)
|
61 |
+
|
62 |
+
def get_startup_time(self, program_start_time):
|
63 |
+
return self.batch_start_times[0] - program_start_time
|
64 |
+
|
65 |
+
|
66 |
+
class BertBenchmarkBase(PerfZeroBenchmark):
|
67 |
+
"""Base class to hold methods common to test classes."""
|
68 |
+
local_flags = None
|
69 |
+
|
70 |
+
def __init__(self, output_dir=None, tpu=None, **kwargs):
|
71 |
+
super(BertBenchmarkBase, self).__init__(
|
72 |
+
output_dir=output_dir, tpu=tpu, **kwargs)
|
73 |
+
self.num_gpus = 8
|
74 |
+
self.timer_callback = None
|
75 |
+
|
76 |
+
def _setup(self):
|
77 |
+
"""Sets up and resets flags before each test."""
|
78 |
+
super(BertBenchmarkBase, self)._setup()
|
79 |
+
self.timer_callback = BenchmarkTimerCallback()
|
80 |
+
|
81 |
+
def _report_benchmark(self, stats, wall_time_sec, min_accuracy, max_accuracy):
|
82 |
+
"""Report benchmark results by writing to local protobuf file.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
stats: dict returned from BERT models with known entries.
|
86 |
+
wall_time_sec: the during of the benchmark execution in seconds
|
87 |
+
min_accuracy: Minimum classification accuracy constraint to verify
|
88 |
+
correctness of the model.
|
89 |
+
max_accuracy: Maximum classification accuracy constraint to verify
|
90 |
+
correctness of the model.
|
91 |
+
"""
|
92 |
+
metrics = [{
|
93 |
+
'name': 'training_loss',
|
94 |
+
'value': stats['train_loss'],
|
95 |
+
}]
|
96 |
+
if self.timer_callback:
|
97 |
+
metrics.append({
|
98 |
+
'name':
|
99 |
+
'exp_per_second',
|
100 |
+
'value':
|
101 |
+
self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size *
|
102 |
+
FLAGS.steps_per_loop)
|
103 |
+
})
|
104 |
+
else:
|
105 |
+
metrics.append({
|
106 |
+
'name': 'exp_per_second',
|
107 |
+
'value': 0.0,
|
108 |
+
})
|
109 |
+
if self.timer_callback and 'start_time_sec' in stats:
|
110 |
+
metrics.append({
|
111 |
+
'name': 'startup_time',
|
112 |
+
'value': self.timer_callback.get_startup_time(stats['start_time_sec'])
|
113 |
+
})
|
114 |
+
|
115 |
+
if 'eval_metrics' in stats:
|
116 |
+
metrics.append({
|
117 |
+
'name': 'eval_accuracy',
|
118 |
+
'value': stats['eval_metrics'],
|
119 |
+
'min_value': min_accuracy,
|
120 |
+
'max_value': max_accuracy,
|
121 |
+
})
|
122 |
+
flags_str = flags_core.get_nondefault_flags_as_str()
|
123 |
+
self.report_benchmark(
|
124 |
+
iters=stats['total_training_steps'],
|
125 |
+
wall_time=wall_time_sec,
|
126 |
+
metrics=metrics,
|
127 |
+
extras={'flags': flags_str})
|
models/official/benchmark/bert_pretrain_benchmark.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
"""Executes benchmark testing for bert pretraining."""
|
17 |
+
# pylint: disable=line-too-long
|
18 |
+
from __future__ import print_function
|
19 |
+
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import time
|
23 |
+
from typing import Optional
|
24 |
+
|
25 |
+
from absl import flags
|
26 |
+
from absl import logging
|
27 |
+
import tensorflow as tf # pylint: disable=g-bad-import-order
|
28 |
+
|
29 |
+
from official.benchmark import benchmark_wrappers
|
30 |
+
from official.benchmark import bert_benchmark_utils
|
31 |
+
from official.benchmark import owner_utils
|
32 |
+
from official.nlp.bert import run_pretraining
|
33 |
+
from official.utils.flags import core as flags_core
|
34 |
+
from official.utils.misc import distribution_utils
|
35 |
+
|
36 |
+
# Pretrain masked lanauge modeling accuracy range:
|
37 |
+
MIN_MLM_ACCURACY = 0.635
|
38 |
+
MAX_MLM_ACCURACY = 0.645
|
39 |
+
|
40 |
+
# Pretrain next sentence prediction accuracy range:
|
41 |
+
MIN_NSP_ACCURACY = 0.94
|
42 |
+
MAX_NSP_ACCURACY = 0.96
|
43 |
+
|
44 |
+
BERT_PRETRAIN_FILES_SEQ128 = 'gs://mlcompass-data/bert/pretraining_data/seq_128/wikipedia.tfrecord*,gs://mlcompass-data/bert/pretraining_data/seq_128/books.tfrecord*'
|
45 |
+
BERT_BASE_CONFIG_FILE = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12/bert_config.json'
|
46 |
+
|
47 |
+
FLAGS = flags.FLAGS
|
48 |
+
|
49 |
+
|
50 |
+
class BertPretrainAccuracyBenchmark(bert_benchmark_utils.BertBenchmarkBase):
|
51 |
+
"""Benchmark accuracy tests for BERT Pretraining."""
|
52 |
+
|
53 |
+
def __init__(self,
|
54 |
+
output_dir: Optional[str] = None,
|
55 |
+
tpu: Optional[str] = None,
|
56 |
+
**kwargs):
|
57 |
+
"""Inits BertPretrainAccuracyBenchmark class.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
output_dir: Directory where to output e.g. log files
|
61 |
+
tpu: TPU name to use in a TPU benchmark.
|
62 |
+
**kwargs: Additional keyword arguments.
|
63 |
+
"""
|
64 |
+
super(BertPretrainAccuracyBenchmark, self).__init__(
|
65 |
+
output_dir=output_dir, tpu=tpu, **kwargs)
|
66 |
+
|
67 |
+
@benchmark_wrappers.enable_runtime_flags
|
68 |
+
def _run_and_report_benchmark(self, summary_path: str, report_accuracy: bool):
|
69 |
+
"""Runs and reports the benchmark given the provided configuration."""
|
70 |
+
distribution = distribution_utils.get_distribution_strategy(
|
71 |
+
distribution_strategy='tpu', tpu_address=self.tpu)
|
72 |
+
logging.info('Flags: %s', flags_core.get_nondefault_flags_as_str())
|
73 |
+
start_time_sec = time.time()
|
74 |
+
run_pretraining.run_bert_pretrain(
|
75 |
+
strategy=distribution, custom_callbacks=self.timer_callback)
|
76 |
+
wall_time_sec = time.time() - start_time_sec
|
77 |
+
|
78 |
+
with tf.io.gfile.GFile(summary_path, 'rb') as reader:
|
79 |
+
summary = json.loads(reader.read().decode('utf-8'))
|
80 |
+
self._report_benchmark(summary, start_time_sec, wall_time_sec,
|
81 |
+
report_accuracy)
|
82 |
+
|
83 |
+
def _report_benchmark(self, summary, start_time_sec, wall_time_sec,
|
84 |
+
report_accuracy):
|
85 |
+
metrics = [{
|
86 |
+
'name': 'train_loss',
|
87 |
+
'value': summary['train_loss'],
|
88 |
+
}, {
|
89 |
+
'name':
|
90 |
+
'exp_per_second',
|
91 |
+
'value':
|
92 |
+
self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size *
|
93 |
+
FLAGS.steps_per_loop)
|
94 |
+
}, {
|
95 |
+
'name': 'startup_time',
|
96 |
+
'value': self.timer_callback.get_startup_time(start_time_sec)
|
97 |
+
}]
|
98 |
+
if report_accuracy:
|
99 |
+
metrics.extend([{
|
100 |
+
'name': 'masked_lm_accuracy',
|
101 |
+
'value': summary['masked_lm_accuracy'],
|
102 |
+
'min_value': MIN_MLM_ACCURACY,
|
103 |
+
'max_value': MAX_MLM_ACCURACY,
|
104 |
+
}, {
|
105 |
+
'name': 'next_sentence_accuracy',
|
106 |
+
'value': summary['next_sentence_accuracy'],
|
107 |
+
'min_value': MIN_NSP_ACCURACY,
|
108 |
+
'max_value': MAX_NSP_ACCURACY,
|
109 |
+
}])
|
110 |
+
self.report_benchmark(
|
111 |
+
iters=summary['total_training_steps'],
|
112 |
+
wall_time=wall_time_sec,
|
113 |
+
metrics=metrics,
|
114 |
+
extras={'flags': flags_core.get_nondefault_flags_as_str()})
|
115 |
+
|
116 |
+
def _specify_common_flags(self):
|
117 |
+
FLAGS.bert_config_file = BERT_BASE_CONFIG_FILE
|
118 |
+
FLAGS.train_batch_size = 512
|
119 |
+
FLAGS.learning_rate = 1e-4
|
120 |
+
FLAGS.warmup_steps = 10000
|
121 |
+
FLAGS.steps_per_loop = 10000
|
122 |
+
FLAGS.distribution_strategy = 'tpu'
|
123 |
+
FLAGS.input_files = BERT_PRETRAIN_FILES_SEQ128
|
124 |
+
FLAGS.max_seq_length = 128
|
125 |
+
FLAGS.max_predictions_per_seq = 20
|
126 |
+
FLAGS.dtype = 'bf16'
|
127 |
+
|
128 |
+
@owner_utils.Owner('tf-model-garden')
|
129 |
+
def benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps(self):
|
130 |
+
"""Test bert pretraining with 8x8 TPU for 500k steps."""
|
131 |
+
# This is used for accuracy test.
|
132 |
+
self._setup()
|
133 |
+
self._specify_common_flags()
|
134 |
+
FLAGS.num_steps_per_epoch = 500000
|
135 |
+
FLAGS.num_train_epochs = 1
|
136 |
+
FLAGS.model_dir = self._get_model_dir(
|
137 |
+
'benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps')
|
138 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
139 |
+
'summaries/training_summary.txt')
|
140 |
+
# Set train_summary_interval to -1 to disable training summary, because
|
141 |
+
# writing summary to gcs may fail and summaries are not needed for this
|
142 |
+
# accuracy benchmark test.
|
143 |
+
FLAGS.train_summary_interval = -1
|
144 |
+
self._run_and_report_benchmark(summary_path=summary_path,
|
145 |
+
report_accuracy=True)
|
146 |
+
|
147 |
+
@owner_utils.Owner('tf-model-garden')
|
148 |
+
def benchmark_perf_4x4_tpu_bf16_seq128_10k_steps(self):
|
149 |
+
"""Test bert pretraining with 4x4 TPU for 10000 steps."""
|
150 |
+
self._setup()
|
151 |
+
self._specify_common_flags()
|
152 |
+
FLAGS.num_steps_per_epoch = 5000
|
153 |
+
FLAGS.num_train_epochs = 2
|
154 |
+
FLAGS.model_dir = self._get_model_dir(
|
155 |
+
'benchmark_perf_4x4_tpu_bf16_seq128_10k_steps')
|
156 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
157 |
+
'summaries/training_summary.txt')
|
158 |
+
# Disable accuracy check.
|
159 |
+
self._run_and_report_benchmark(
|
160 |
+
summary_path=summary_path, report_accuracy=False)
|
161 |
+
|
162 |
+
@owner_utils.Owner('tf-model-garden')
|
163 |
+
def benchmark_perf_8x8_tpu_bf16_seq128_10k_steps(self):
|
164 |
+
"""Test bert pretraining with 8x8 TPU for 10000 steps."""
|
165 |
+
self._setup()
|
166 |
+
self._specify_common_flags()
|
167 |
+
FLAGS.num_steps_per_epoch = 5000
|
168 |
+
FLAGS.num_train_epochs = 2
|
169 |
+
FLAGS.model_dir = self._get_model_dir(
|
170 |
+
'benchmark_perf_8x8_tpu_bf16_seq128_10k_steps')
|
171 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
172 |
+
'summaries/training_summary.txt')
|
173 |
+
# Disable accuracy check.
|
174 |
+
self._run_and_report_benchmark(summary_path=summary_path,
|
175 |
+
report_accuracy=False)
|
176 |
+
|
177 |
+
|
178 |
+
if __name__ == '__main__':
|
179 |
+
tf.test.main()
|
models/official/benchmark/bert_squad_benchmark.py
ADDED
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Executes BERT SQuAD benchmarks and accuracy tests."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import json
|
22 |
+
import os
|
23 |
+
import time
|
24 |
+
|
25 |
+
# pylint: disable=g-bad-import-order
|
26 |
+
from absl import flags
|
27 |
+
from absl import logging
|
28 |
+
from absl.testing import flagsaver
|
29 |
+
import tensorflow as tf
|
30 |
+
# pylint: enable=g-bad-import-order
|
31 |
+
|
32 |
+
from official.benchmark import bert_benchmark_utils as benchmark_utils
|
33 |
+
from official.benchmark import owner_utils
|
34 |
+
from official.nlp.bert import run_squad
|
35 |
+
from official.utils.misc import distribution_utils
|
36 |
+
from official.utils.misc import keras_utils
|
37 |
+
from official.benchmark import benchmark_wrappers
|
38 |
+
|
39 |
+
|
40 |
+
# pylint: disable=line-too-long
|
41 |
+
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
|
42 |
+
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
|
43 |
+
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
|
44 |
+
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
|
45 |
+
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
|
46 |
+
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
|
47 |
+
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
|
48 |
+
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
|
49 |
+
# pylint: enable=line-too-long
|
50 |
+
|
51 |
+
TMP_DIR = os.getenv('TMPDIR')
|
52 |
+
FLAGS = flags.FLAGS
|
53 |
+
|
54 |
+
|
55 |
+
class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
|
56 |
+
"""Base class to hold methods common to test classes in the module."""
|
57 |
+
|
58 |
+
def __init__(self, output_dir=None, tpu=None):
|
59 |
+
super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir, tpu=tpu)
|
60 |
+
|
61 |
+
def _read_training_summary_from_file(self):
|
62 |
+
"""Reads the training summary from a file."""
|
63 |
+
summary_path = os.path.join(FLAGS.model_dir,
|
64 |
+
'summaries/training_summary.txt')
|
65 |
+
with tf.io.gfile.GFile(summary_path, 'rb') as reader:
|
66 |
+
return json.loads(reader.read().decode('utf-8'))
|
67 |
+
|
68 |
+
def _read_input_meta_data_from_file(self):
|
69 |
+
"""Reads the input metadata from a file."""
|
70 |
+
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
|
71 |
+
return json.loads(reader.read().decode('utf-8'))
|
72 |
+
|
73 |
+
def _get_distribution_strategy(self, ds_type='mirrored'):
|
74 |
+
"""Gets the distribution strategy.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
ds_type: String, the distribution strategy type to be used. Can be
|
78 |
+
'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
A `tf.distribute.DistibutionStrategy` object.
|
82 |
+
"""
|
83 |
+
if self.tpu or ds_type == 'tpu':
|
84 |
+
return distribution_utils.get_distribution_strategy(
|
85 |
+
distribution_strategy='tpu', tpu_address=self.tpu)
|
86 |
+
elif ds_type == 'multi_worker_mirrored':
|
87 |
+
# Configures cluster spec for multi-worker distribution strategy.
|
88 |
+
_ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
|
89 |
+
FLAGS.task_index)
|
90 |
+
return distribution_utils.get_distribution_strategy(
|
91 |
+
distribution_strategy=ds_type,
|
92 |
+
num_gpus=self.num_gpus,
|
93 |
+
all_reduce_alg=FLAGS.all_reduce_alg)
|
94 |
+
|
95 |
+
def _init_gpu_and_data_threads(self):
|
96 |
+
"""Set env variables before any TF calls."""
|
97 |
+
if FLAGS.tf_gpu_thread_mode:
|
98 |
+
keras_utils.set_gpu_thread_mode_and_count(
|
99 |
+
per_gpu_thread_count=FLAGS.per_gpu_thread_count,
|
100 |
+
gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
|
101 |
+
num_gpus=self.num_gpus,
|
102 |
+
datasets_num_private_threads=FLAGS.datasets_num_private_threads)
|
103 |
+
|
104 |
+
@flagsaver.flagsaver
|
105 |
+
def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
|
106 |
+
"""Runs BERT SQuAD training. Uses mirrored strategy by default."""
|
107 |
+
self._init_gpu_and_data_threads()
|
108 |
+
input_meta_data = self._read_input_meta_data_from_file()
|
109 |
+
strategy = self._get_distribution_strategy(ds_type)
|
110 |
+
|
111 |
+
run_squad.train_squad(
|
112 |
+
strategy=strategy,
|
113 |
+
input_meta_data=input_meta_data,
|
114 |
+
run_eagerly=run_eagerly,
|
115 |
+
custom_callbacks=[self.timer_callback])
|
116 |
+
|
117 |
+
@flagsaver.flagsaver
|
118 |
+
def _evaluate_squad(self, ds_type='mirrored'):
|
119 |
+
"""Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
|
120 |
+
self._init_gpu_and_data_threads()
|
121 |
+
input_meta_data = self._read_input_meta_data_from_file()
|
122 |
+
strategy = self._get_distribution_strategy(ds_type)
|
123 |
+
|
124 |
+
if input_meta_data.get('version_2_with_negative', False):
|
125 |
+
logging.error('In memory evaluation result for SQuAD v2 is not accurate')
|
126 |
+
eval_metrics = run_squad.eval_squad(strategy=strategy,
|
127 |
+
input_meta_data=input_meta_data)
|
128 |
+
# Use F1 score as reported evaluation metric.
|
129 |
+
self.eval_metrics = eval_metrics['final_f1']
|
130 |
+
|
131 |
+
|
132 |
+
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
|
133 |
+
"""Short benchmark performance tests for BERT SQuAD model.
|
134 |
+
|
135 |
+
Tests BERT SQuAD performance in different GPU configurations.
|
136 |
+
The naming convention of below test cases follow
|
137 |
+
`benchmark_(number of gpus)_gpu` format for GPUs and
|
138 |
+
`benchmark_(topology)_tpu` format for TPUs.
|
139 |
+
"""
|
140 |
+
|
141 |
+
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
|
142 |
+
super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
|
143 |
+
|
144 |
+
def _setup(self):
|
145 |
+
"""Sets up the benchmark and SQuAD flags."""
|
146 |
+
super(BertSquadBenchmarkReal, self)._setup()
|
147 |
+
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
|
148 |
+
FLAGS.predict_file = SQUAD_PREDICT_FILE
|
149 |
+
FLAGS.vocab_file = SQUAD_VOCAB_FILE
|
150 |
+
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
|
151 |
+
FLAGS.num_train_epochs = 1
|
152 |
+
FLAGS.steps_per_loop = 100
|
153 |
+
|
154 |
+
@benchmark_wrappers.enable_runtime_flags
|
155 |
+
def _run_and_report_benchmark(self,
|
156 |
+
run_eagerly=False,
|
157 |
+
ds_type='mirrored'):
|
158 |
+
"""Runs the benchmark and reports various metrics."""
|
159 |
+
if FLAGS.train_batch_size <= 4 or run_eagerly:
|
160 |
+
FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
|
161 |
+
else:
|
162 |
+
FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
|
163 |
+
start_time_sec = time.time()
|
164 |
+
self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
|
165 |
+
wall_time_sec = time.time() - start_time_sec
|
166 |
+
|
167 |
+
summary = self._read_training_summary_from_file()
|
168 |
+
summary['start_time_sec'] = start_time_sec
|
169 |
+
|
170 |
+
super(BertSquadBenchmarkReal, self)._report_benchmark(
|
171 |
+
stats=summary,
|
172 |
+
wall_time_sec=wall_time_sec,
|
173 |
+
min_accuracy=0,
|
174 |
+
max_accuracy=1)
|
175 |
+
|
176 |
+
def benchmark_1_gpu(self):
|
177 |
+
"""Tests BERT SQuAD model performance with 1 GPU."""
|
178 |
+
|
179 |
+
self._setup()
|
180 |
+
self.num_gpus = 1
|
181 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
|
182 |
+
FLAGS.train_batch_size = 4
|
183 |
+
|
184 |
+
self._run_and_report_benchmark()
|
185 |
+
|
186 |
+
def benchmark_1_gpu_eager(self):
|
187 |
+
"""Tests BERT SQuAD model performance with 1 GPU."""
|
188 |
+
|
189 |
+
self._setup()
|
190 |
+
self.num_gpus = 1
|
191 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
|
192 |
+
FLAGS.train_batch_size = 2
|
193 |
+
|
194 |
+
self._run_and_report_benchmark(run_eagerly=True)
|
195 |
+
|
196 |
+
def benchmark_1_gpu_xla(self):
|
197 |
+
"""Tests BERT SQuAD model performance with 1 GPU with XLA."""
|
198 |
+
|
199 |
+
self._setup()
|
200 |
+
self.num_gpus = 1
|
201 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
|
202 |
+
# XLA runs out of memory when running with batch size 4.
|
203 |
+
FLAGS.train_batch_size = 3
|
204 |
+
FLAGS.enable_xla = True
|
205 |
+
|
206 |
+
self._run_and_report_benchmark()
|
207 |
+
|
208 |
+
def benchmark_1_gpu_no_dist_strat(self):
|
209 |
+
"""Tests BERT SQuAD model performance with 1 GPU without DS."""
|
210 |
+
|
211 |
+
self._setup()
|
212 |
+
self.num_gpus = 1
|
213 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
|
214 |
+
FLAGS.train_batch_size = 4
|
215 |
+
|
216 |
+
self._run_and_report_benchmark(ds_type='off')
|
217 |
+
|
218 |
+
def benchmark_1_gpu_eager_no_dist_strat(self):
|
219 |
+
"""Tests BERT SQuAD model performance with 1 GPU with eager execution."""
|
220 |
+
|
221 |
+
self._setup()
|
222 |
+
self.num_gpus = 1
|
223 |
+
FLAGS.model_dir = self._get_model_dir(
|
224 |
+
'benchmark_1_gpu_eager_no_dist_strat_squad')
|
225 |
+
FLAGS.train_batch_size = 4
|
226 |
+
|
227 |
+
self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
|
228 |
+
|
229 |
+
@owner_utils.Owner('tf-model-garden')
|
230 |
+
def benchmark_8_gpu(self):
|
231 |
+
"""Tests BERT SQuAD model performance with 8 GPUs."""
|
232 |
+
|
233 |
+
self._setup()
|
234 |
+
self.num_gpus = 8
|
235 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
|
236 |
+
FLAGS.train_batch_size = 24
|
237 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
238 |
+
|
239 |
+
self._run_and_report_benchmark()
|
240 |
+
|
241 |
+
def benchmark_1_gpu_fp16_eager(self):
|
242 |
+
"""Tests BERT SQuAD model performance with 1 GPU and FP16."""
|
243 |
+
|
244 |
+
self._setup()
|
245 |
+
self.num_gpus = 1
|
246 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
|
247 |
+
FLAGS.train_batch_size = 4
|
248 |
+
FLAGS.dtype = 'fp16'
|
249 |
+
FLAGS.loss_scale = 'dynamic'
|
250 |
+
|
251 |
+
self._run_and_report_benchmark(run_eagerly=True)
|
252 |
+
|
253 |
+
def benchmark_1_gpu_fp16(self):
|
254 |
+
"""Tests BERT SQuAD model performance with 1 GPU and FP16."""
|
255 |
+
|
256 |
+
self._setup()
|
257 |
+
self.num_gpus = 1
|
258 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
|
259 |
+
FLAGS.train_batch_size = 4
|
260 |
+
FLAGS.dtype = 'fp16'
|
261 |
+
FLAGS.loss_scale = 'dynamic'
|
262 |
+
|
263 |
+
self._run_and_report_benchmark()
|
264 |
+
|
265 |
+
def benchmark_1_gpu_xla_fp16(self):
|
266 |
+
"""Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""
|
267 |
+
|
268 |
+
self._setup()
|
269 |
+
self.num_gpus = 1
|
270 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
|
271 |
+
FLAGS.train_batch_size = 4
|
272 |
+
FLAGS.enable_xla = True
|
273 |
+
FLAGS.dtype = 'fp16'
|
274 |
+
FLAGS.loss_scale = 'dynamic'
|
275 |
+
|
276 |
+
self._run_and_report_benchmark()
|
277 |
+
|
278 |
+
def benchmark_8_gpu_fp16(self):
|
279 |
+
"""Tests BERT SQuAD model performance with 8 GPUs."""
|
280 |
+
|
281 |
+
self._setup()
|
282 |
+
self.num_gpus = 8
|
283 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
|
284 |
+
FLAGS.train_batch_size = 32
|
285 |
+
FLAGS.dtype = 'fp16'
|
286 |
+
FLAGS.loss_scale = 'dynamic'
|
287 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
288 |
+
|
289 |
+
self._run_and_report_benchmark()
|
290 |
+
|
291 |
+
def benchmark_8_gpu_xla_fp16(self):
|
292 |
+
"""Tests BERT SQuAD model performance with 8 GPUs with XLA."""
|
293 |
+
|
294 |
+
self._setup()
|
295 |
+
self.num_gpus = 8
|
296 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
|
297 |
+
FLAGS.train_batch_size = 32
|
298 |
+
FLAGS.enable_xla = True
|
299 |
+
FLAGS.dtype = 'fp16'
|
300 |
+
FLAGS.loss_scale = 'dynamic'
|
301 |
+
|
302 |
+
self._run_and_report_benchmark()
|
303 |
+
|
304 |
+
def benchmark_1_gpu_amp(self):
|
305 |
+
"""Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""
|
306 |
+
|
307 |
+
self._setup()
|
308 |
+
self.num_gpus = 1
|
309 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
|
310 |
+
FLAGS.train_batch_size = 4
|
311 |
+
FLAGS.dtype = 'fp16'
|
312 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
313 |
+
|
314 |
+
self._run_and_report_benchmark()
|
315 |
+
|
316 |
+
def benchmark_8_gpu_amp(self):
|
317 |
+
"""Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""
|
318 |
+
|
319 |
+
self._setup()
|
320 |
+
self.num_gpus = 8
|
321 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
|
322 |
+
FLAGS.train_batch_size = 32
|
323 |
+
FLAGS.dtype = 'fp16'
|
324 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
325 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
326 |
+
|
327 |
+
self._run_and_report_benchmark()
|
328 |
+
|
329 |
+
@owner_utils.Owner('tf-model-garden')
|
330 |
+
def benchmark_2x2_tpu(self):
|
331 |
+
"""Tests BERT SQuAD model performance with 2x2 TPU."""
|
332 |
+
|
333 |
+
self._setup()
|
334 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
|
335 |
+
FLAGS.train_batch_size = 48
|
336 |
+
FLAGS.predict_batch_size = 48
|
337 |
+
FLAGS.mode = 'train'
|
338 |
+
FLAGS.learning_rate = 8e-5
|
339 |
+
FLAGS.num_train_epochs = 1
|
340 |
+
FLAGS.steps_per_loop = 100
|
341 |
+
FLAGS.do_lower_case = True
|
342 |
+
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
|
343 |
+
self._run_and_report_benchmark()
|
344 |
+
|
345 |
+
|
346 |
+
class BertSquadAccuracy(BertSquadBenchmarkBase):
|
347 |
+
"""Short accuracy test for BERT SQuAD model.
|
348 |
+
|
349 |
+
Tests BERT SQuAD accuracy. The naming convention of below test cases follow
|
350 |
+
`benchmark_(number of gpus)_gpu` format for GPUs and
|
351 |
+
`benchmark_(topology)_tpu` format for TPUs.
|
352 |
+
"""
|
353 |
+
|
354 |
+
def __init__(self, output_dir=None, tpu=None, **kwargs):
|
355 |
+
super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
|
356 |
+
|
357 |
+
def _setup(self):
|
358 |
+
"""Sets up the benchmark and SQuAD flags."""
|
359 |
+
super(BertSquadAccuracy, self)._setup()
|
360 |
+
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
|
361 |
+
FLAGS.predict_file = SQUAD_PREDICT_FILE
|
362 |
+
FLAGS.vocab_file = SQUAD_VOCAB_FILE
|
363 |
+
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
|
364 |
+
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
|
365 |
+
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
|
366 |
+
FLAGS.num_train_epochs = 2
|
367 |
+
FLAGS.steps_per_loop = 100
|
368 |
+
|
369 |
+
@benchmark_wrappers.enable_runtime_flags
|
370 |
+
def _run_and_report_benchmark(self,
|
371 |
+
run_eagerly=False,
|
372 |
+
ds_type='mirrored'):
|
373 |
+
"""Runs the benchmark and reports various metrics."""
|
374 |
+
start_time_sec = time.time()
|
375 |
+
self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
|
376 |
+
self._evaluate_squad(ds_type=ds_type)
|
377 |
+
wall_time_sec = time.time() - start_time_sec
|
378 |
+
|
379 |
+
summary = self._read_training_summary_from_file()
|
380 |
+
summary['eval_metrics'] = self.eval_metrics
|
381 |
+
summary['start_time_sec'] = start_time_sec
|
382 |
+
|
383 |
+
super(BertSquadAccuracy, self)._report_benchmark(
|
384 |
+
stats=summary,
|
385 |
+
wall_time_sec=wall_time_sec,
|
386 |
+
min_accuracy=0.900,
|
387 |
+
max_accuracy=0.920)
|
388 |
+
|
389 |
+
def benchmark_1_gpu_eager(self):
|
390 |
+
"""Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""
|
391 |
+
|
392 |
+
self._setup()
|
393 |
+
self.num_gpus = 1
|
394 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
|
395 |
+
FLAGS.train_batch_size = 4
|
396 |
+
|
397 |
+
self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
|
398 |
+
|
399 |
+
@owner_utils.Owner('tf-model-garden')
|
400 |
+
def benchmark_8_gpu(self):
|
401 |
+
"""Tests BERT SQuAD model accuracy with 8 GPUs."""
|
402 |
+
|
403 |
+
self._setup()
|
404 |
+
self.num_gpus = 8
|
405 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
|
406 |
+
FLAGS.train_batch_size = 24
|
407 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
408 |
+
|
409 |
+
self._run_and_report_benchmark()
|
410 |
+
|
411 |
+
def benchmark_8_gpu_fp16(self):
|
412 |
+
"""Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""
|
413 |
+
|
414 |
+
self._setup()
|
415 |
+
self.num_gpus = 8
|
416 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
|
417 |
+
FLAGS.train_batch_size = 32
|
418 |
+
FLAGS.dtype = 'fp16'
|
419 |
+
FLAGS.loss_scale = 'dynamic'
|
420 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
421 |
+
|
422 |
+
self._run_and_report_benchmark()
|
423 |
+
|
424 |
+
def benchmark_8_gpu_xla(self):
|
425 |
+
"""Tests BERT SQuAD model accuracy with 8 GPUs."""
|
426 |
+
|
427 |
+
self._setup()
|
428 |
+
self.num_gpus = 8
|
429 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
|
430 |
+
FLAGS.train_batch_size = 32
|
431 |
+
FLAGS.enable_xla = True
|
432 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
433 |
+
|
434 |
+
self._run_and_report_benchmark()
|
435 |
+
|
436 |
+
@owner_utils.Owner('tf-model-garden')
|
437 |
+
def benchmark_2x2_tpu(self):
|
438 |
+
"""Tests BERT SQuAD model accuracy with 2x2 TPU."""
|
439 |
+
|
440 |
+
self._setup()
|
441 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
|
442 |
+
FLAGS.train_batch_size = 48
|
443 |
+
|
444 |
+
self._run_and_report_benchmark()
|
445 |
+
|
446 |
+
|
447 |
+
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
|
448 |
+
"""BERT SQuAD distributed accuracy tests with multiple workers."""
|
449 |
+
|
450 |
+
def __init__(self, output_dir=None, tpu=None, **kwargs):
|
451 |
+
super(BertSquadMultiWorkerAccuracy, self).__init__(
|
452 |
+
output_dir=output_dir, tpu=tpu)
|
453 |
+
|
454 |
+
def _setup(self):
|
455 |
+
"""Sets up the benchmark and SQuAD flags."""
|
456 |
+
super(BertSquadMultiWorkerAccuracy, self)._setup()
|
457 |
+
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
|
458 |
+
FLAGS.predict_file = SQUAD_PREDICT_FILE
|
459 |
+
FLAGS.vocab_file = SQUAD_VOCAB_FILE
|
460 |
+
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
|
461 |
+
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
|
462 |
+
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
|
463 |
+
FLAGS.num_train_epochs = 2
|
464 |
+
FLAGS.steps_per_loop = 100
|
465 |
+
|
466 |
+
@benchmark_wrappers.enable_runtime_flags
|
467 |
+
def _run_and_report_benchmark(self,
|
468 |
+
use_ds=True,
|
469 |
+
run_eagerly=False):
|
470 |
+
"""Runs the benchmark and reports various metrics."""
|
471 |
+
start_time_sec = time.time()
|
472 |
+
self._train_squad(run_eagerly=run_eagerly,
|
473 |
+
ds_type='multi_worker_mirrored')
|
474 |
+
self._evaluate_squad(ds_type='multi_worker_mirrored')
|
475 |
+
wall_time_sec = time.time() - start_time_sec
|
476 |
+
|
477 |
+
summary = self._read_training_summary_from_file()
|
478 |
+
summary['eval_metrics'] = self.eval_metrics
|
479 |
+
|
480 |
+
super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
|
481 |
+
stats=summary,
|
482 |
+
wall_time_sec=wall_time_sec,
|
483 |
+
min_accuracy=0.900,
|
484 |
+
max_accuracy=0.920)
|
485 |
+
|
486 |
+
def _benchmark_common(self, num_workers, all_reduce_alg):
|
487 |
+
"""Common to all benchmarks in this class."""
|
488 |
+
self._setup()
|
489 |
+
|
490 |
+
num_gpus = 8
|
491 |
+
FLAGS.num_gpus = num_gpus
|
492 |
+
FLAGS.dtype = 'fp16'
|
493 |
+
FLAGS.enable_xla = False
|
494 |
+
FLAGS.distribution_strategy = 'multi_worker_mirrored'
|
495 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
496 |
+
FLAGS.datasets_num_private_threads = 32
|
497 |
+
FLAGS.model_dir = self._get_model_dir(
|
498 |
+
'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
|
499 |
+
num_workers, all_reduce_alg))
|
500 |
+
FLAGS.train_batch_size = 4 * num_gpus * num_workers
|
501 |
+
FLAGS.all_reduce_alg = all_reduce_alg
|
502 |
+
|
503 |
+
self._run_and_report_benchmark()
|
504 |
+
|
505 |
+
def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
|
506 |
+
"""8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
|
507 |
+
self._benchmark_common(num_workers=2, all_reduce_alg='ring')
|
508 |
+
|
509 |
+
def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
|
510 |
+
"""8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
|
511 |
+
self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
|
512 |
+
|
513 |
+
def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
|
514 |
+
"""8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
|
515 |
+
self._benchmark_common(num_workers=8, all_reduce_alg='ring')
|
516 |
+
|
517 |
+
def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
|
518 |
+
"""8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
|
519 |
+
self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
|
520 |
+
|
521 |
+
|
522 |
+
class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
|
523 |
+
"""BERT SQuAD distributed benchmark tests with multiple workers."""
|
524 |
+
|
525 |
+
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
|
526 |
+
super(BertSquadMultiWorkerBenchmark, self).__init__(
|
527 |
+
output_dir=output_dir, tpu=tpu)
|
528 |
+
|
529 |
+
def _setup(self):
|
530 |
+
"""Sets up the benchmark and SQuAD flags."""
|
531 |
+
super(BertSquadMultiWorkerBenchmark, self)._setup()
|
532 |
+
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
|
533 |
+
FLAGS.predict_file = SQUAD_PREDICT_FILE
|
534 |
+
FLAGS.vocab_file = SQUAD_VOCAB_FILE
|
535 |
+
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
|
536 |
+
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
|
537 |
+
FLAGS.num_train_epochs = 1
|
538 |
+
FLAGS.steps_per_loop = 100
|
539 |
+
|
540 |
+
@benchmark_wrappers.enable_runtime_flags
|
541 |
+
def _run_and_report_benchmark(self,
|
542 |
+
use_ds=True,
|
543 |
+
run_eagerly=False):
|
544 |
+
"""Runs the benchmark and reports various metrics."""
|
545 |
+
if FLAGS.train_batch_size <= 4 * 8:
|
546 |
+
FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
|
547 |
+
else:
|
548 |
+
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
|
549 |
+
start_time_sec = time.time()
|
550 |
+
self._train_squad(run_eagerly=run_eagerly,
|
551 |
+
ds_type='multi_worker_mirrored')
|
552 |
+
wall_time_sec = time.time() - start_time_sec
|
553 |
+
|
554 |
+
summary = self._read_training_summary_from_file()
|
555 |
+
summary['start_time_sec'] = start_time_sec
|
556 |
+
|
557 |
+
super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
|
558 |
+
stats=summary,
|
559 |
+
wall_time_sec=wall_time_sec,
|
560 |
+
min_accuracy=0,
|
561 |
+
max_accuracy=1)
|
562 |
+
|
563 |
+
def _benchmark_common(self, num_workers, all_reduce_alg):
|
564 |
+
"""Common to all benchmarks in this class."""
|
565 |
+
self._setup()
|
566 |
+
|
567 |
+
num_gpus = 8
|
568 |
+
FLAGS.num_gpus = num_gpus
|
569 |
+
FLAGS.dtype = 'fp16'
|
570 |
+
FLAGS.enable_xla = False
|
571 |
+
FLAGS.distribution_strategy = 'multi_worker_mirrored'
|
572 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
573 |
+
FLAGS.datasets_num_private_threads = 32
|
574 |
+
FLAGS.model_dir = self._get_model_dir(
|
575 |
+
'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
|
576 |
+
num_workers, all_reduce_alg))
|
577 |
+
FLAGS.train_batch_size = 4 * num_gpus * num_workers
|
578 |
+
FLAGS.all_reduce_alg = all_reduce_alg
|
579 |
+
|
580 |
+
self._run_and_report_benchmark()
|
581 |
+
|
582 |
+
def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
|
583 |
+
"""8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
|
584 |
+
self._benchmark_common(num_workers=1, all_reduce_alg='ring')
|
585 |
+
|
586 |
+
def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
|
587 |
+
"""8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
|
588 |
+
self._benchmark_common(num_workers=1, all_reduce_alg='nccl')
|
589 |
+
|
590 |
+
def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
|
591 |
+
"""8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
|
592 |
+
self._benchmark_common(num_workers=2, all_reduce_alg='ring')
|
593 |
+
|
594 |
+
def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
|
595 |
+
"""8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
|
596 |
+
self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
|
597 |
+
|
598 |
+
def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
|
599 |
+
"""8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
|
600 |
+
self._benchmark_common(num_workers=8, all_reduce_alg='ring')
|
601 |
+
|
602 |
+
def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
|
603 |
+
"""8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
|
604 |
+
self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
|
605 |
+
|
606 |
+
|
607 |
+
if __name__ == '__main__':
|
608 |
+
tf.test.main()
|
models/official/benchmark/datastore/schema/benchmark_metric.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"description": "The ID of the benchmark run, where this metric should tie to.",
|
4 |
+
"mode": "REQUIRED",
|
5 |
+
"name": "run_id",
|
6 |
+
"type": "STRING"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"description": "The name of the metric, which should be descriptive. E.g. training_loss, accuracy.",
|
10 |
+
"mode": "REQUIRED",
|
11 |
+
"name": "name",
|
12 |
+
"type": "STRING"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"description": "The unit of the metric. E.g. MB per sec.",
|
16 |
+
"mode": "NULLABLE",
|
17 |
+
"name": "unit",
|
18 |
+
"type": "STRING"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"description": "The value of the metric.",
|
22 |
+
"mode": "NULLABLE",
|
23 |
+
"name": "value",
|
24 |
+
"type": "FLOAT"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"description": "The timestamp when the metric is recorded.",
|
28 |
+
"mode": "REQUIRED",
|
29 |
+
"name": "timestamp",
|
30 |
+
"type": "TIMESTAMP"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"description": "The global step when this metric is recorded.",
|
34 |
+
"mode": "NULLABLE",
|
35 |
+
"name": "global_step",
|
36 |
+
"type": "INTEGER"
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"description": "Free format metadata for the extra information about the metric.",
|
40 |
+
"mode": "REPEATED",
|
41 |
+
"name": "extras",
|
42 |
+
"type": "RECORD",
|
43 |
+
"fields": [
|
44 |
+
{
|
45 |
+
"mode": "NULLABLE",
|
46 |
+
"name": "name",
|
47 |
+
"type": "STRING"
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"mode": "NULLABLE",
|
51 |
+
"name": "value",
|
52 |
+
"type": "STRING"
|
53 |
+
}
|
54 |
+
]
|
55 |
+
}
|
56 |
+
]
|
models/official/benchmark/datastore/schema/benchmark_run.json
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"description": "The UUID of the run for the benchmark.",
|
4 |
+
"mode": "REQUIRED",
|
5 |
+
"name": "model_id",
|
6 |
+
"type": "STRING"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"description": "The name of the model, E.g ResNet50, LeNet-5 etc.",
|
10 |
+
"mode": "REQUIRED",
|
11 |
+
"name": "model_name",
|
12 |
+
"type": "STRING"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"description": "The date when the test of the model is started",
|
16 |
+
"mode": "REQUIRED",
|
17 |
+
"name": "run_date",
|
18 |
+
"type": "TIMESTAMP"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"description": "The unique name for a test by the combination of key parameters, eg batch size, num of GPU, etc. It is hardware independent.",
|
22 |
+
"mode": "NULLABLE",
|
23 |
+
"name": "test_id",
|
24 |
+
"type": "STRING"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"description": "The tensorflow version information.",
|
28 |
+
"fields": [
|
29 |
+
{
|
30 |
+
"description": "Version of the tensorflow. E.g. 1.7.0-rc0",
|
31 |
+
"mode": "REQUIRED",
|
32 |
+
"name": "version",
|
33 |
+
"type": "STRING"
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"description": "Git Hash of the tensorflow",
|
37 |
+
"mode": "NULLABLE",
|
38 |
+
"name": "git_hash",
|
39 |
+
"type": "STRING"
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"description": "The channel of the tensorflow binary, eg, nightly, RC, final, custom.",
|
43 |
+
"mode": "NULLABLE",
|
44 |
+
"name": "channel",
|
45 |
+
"type": "STRING"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"description": "Identify anything special about the build, eg CUDA 10, NCCL, MKL, etc.",
|
49 |
+
"mode": "NULLABLE",
|
50 |
+
"name": "build_type",
|
51 |
+
"type": "STRING"
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"mode": "REQUIRED",
|
55 |
+
"name": "tensorflow_version",
|
56 |
+
"type": "RECORD"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"description": "The arbitrary attribute of the model.",
|
60 |
+
"fields": [
|
61 |
+
{
|
62 |
+
"description": "The name of the attribute.",
|
63 |
+
"mode": "REQUIRED",
|
64 |
+
"name": "name",
|
65 |
+
"type": "STRING"
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"description": "The value of the attribute.",
|
69 |
+
"mode": "NULLABLE",
|
70 |
+
"name": "value",
|
71 |
+
"type": "STRING"
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"mode": "REPEATED",
|
75 |
+
"name": "attribute",
|
76 |
+
"type": "RECORD"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"description": "Environment variables when the benchmark run is executed.",
|
80 |
+
"fields": [
|
81 |
+
{
|
82 |
+
"description": "The name of the variable.",
|
83 |
+
"mode": "REQUIRED",
|
84 |
+
"name": "name",
|
85 |
+
"type": "STRING"
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"description": "The value of the variable.",
|
89 |
+
"mode": "NULLABLE",
|
90 |
+
"name": "value",
|
91 |
+
"type": "STRING"
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"mode": "REPEATED",
|
95 |
+
"name": "environment_variable",
|
96 |
+
"type": "RECORD"
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"description": "TF Environment variables when the benchmark run is executed.",
|
100 |
+
"fields": [
|
101 |
+
{
|
102 |
+
"description": "The name of the variable.",
|
103 |
+
"mode": "REQUIRED",
|
104 |
+
"name": "name",
|
105 |
+
"type": "STRING"
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"description": "The value of the variable.",
|
109 |
+
"mode": "NULLABLE",
|
110 |
+
"name": "value",
|
111 |
+
"type": "STRING"
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"mode": "REPEATED",
|
115 |
+
"name": "tensorflow_environment_variables",
|
116 |
+
"type": "RECORD"
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"description": "The list of parameters run with the model. It could contain hyperparameters or others.",
|
120 |
+
"fields": [
|
121 |
+
{
|
122 |
+
"description": "The name of the parameter.",
|
123 |
+
"mode": "REQUIRED",
|
124 |
+
"name": "name",
|
125 |
+
"type": "STRING"
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"description": "The string value of the parameter.",
|
129 |
+
"mode": "NULLABLE",
|
130 |
+
"name": "string_value",
|
131 |
+
"type": "STRING"
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"description": "The bool value of the parameter.",
|
135 |
+
"mode": "NULLABLE",
|
136 |
+
"name": "bool_value",
|
137 |
+
"type": "STRING"
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"description": "The int/long value of the parameter.",
|
141 |
+
"mode": "NULLABLE",
|
142 |
+
"name": "long_value",
|
143 |
+
"type": "INTEGER"
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"description": "The double/float value of parameter.",
|
147 |
+
"mode": "NULLABLE",
|
148 |
+
"name": "float_value",
|
149 |
+
"type": "FLOAT"
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"mode": "REPEATED",
|
153 |
+
"name": "run_parameters",
|
154 |
+
"type": "RECORD"
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"description": "The dataset that run with the benchmark.",
|
158 |
+
"mode": "NULLABLE",
|
159 |
+
"name": "dataset",
|
160 |
+
"type": "RECORD",
|
161 |
+
"fields": [
|
162 |
+
{
|
163 |
+
"description": "The name of the dataset that the model is trained/validated with. E.g ImageNet, mnist.",
|
164 |
+
"mode": "REQUIRED",
|
165 |
+
"name": "name",
|
166 |
+
"type": "STRING"
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"description": "The arbitrary attribute of the dataset.",
|
170 |
+
"fields": [
|
171 |
+
{
|
172 |
+
"description": "The name of the attribute.",
|
173 |
+
"mode": "REQUIRED",
|
174 |
+
"name": "name",
|
175 |
+
"type": "STRING"
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"description": "The value of the attribute.",
|
179 |
+
"mode": "NULLABLE",
|
180 |
+
"name": "value",
|
181 |
+
"type": "STRING"
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"mode": "REPEATED",
|
185 |
+
"name": "attribute",
|
186 |
+
"type": "RECORD"
|
187 |
+
}
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"description": "Used to differentiate from AWS, GCE or DGX-1 at a high level",
|
192 |
+
"mode": "NULLABLE",
|
193 |
+
"name": "test_environment",
|
194 |
+
"type": "STRING"
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"description": "The machine configuration of the benchmark run.",
|
198 |
+
"mode": "NULLABLE",
|
199 |
+
"name": "machine_config",
|
200 |
+
"type": "RECORD",
|
201 |
+
"fields": [
|
202 |
+
{
|
203 |
+
"description": "The platform information of the benchmark run.",
|
204 |
+
"mode": "NULLABLE",
|
205 |
+
"name": "platform_info",
|
206 |
+
"type": "RECORD",
|
207 |
+
"fields": [
|
208 |
+
{
|
209 |
+
"description": "Eg: 64bit.",
|
210 |
+
"mode": "NULLABLE",
|
211 |
+
"name": "bits",
|
212 |
+
"type": "STRING"
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"description": "Eg: ELF.",
|
216 |
+
"mode": "NULLABLE",
|
217 |
+
"name": "linkage",
|
218 |
+
"type": "STRING"
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"description": "Eg: i386.",
|
222 |
+
"mode": "NULLABLE",
|
223 |
+
"name": "machine",
|
224 |
+
"type": "STRING"
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"description": "Eg: 3.13.0-76-generic.",
|
228 |
+
"mode": "NULLABLE",
|
229 |
+
"name": "release",
|
230 |
+
"type": "STRING"
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"description": "Eg: Linux.",
|
234 |
+
"mode": "NULLABLE",
|
235 |
+
"name": "system",
|
236 |
+
"type": "STRING"
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"description": "Eg: #120-Ubuntu SMP Mon Jan 18 15:59:10 UTC 2016.",
|
240 |
+
"mode": "NULLABLE",
|
241 |
+
"name": "version",
|
242 |
+
"type": "STRING"
|
243 |
+
}
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"description": "The CPU information of the benchmark run.",
|
248 |
+
"mode": "NULLABLE",
|
249 |
+
"name": "cpu_info",
|
250 |
+
"type": "RECORD",
|
251 |
+
"fields": [
|
252 |
+
{
|
253 |
+
"mode": "NULLABLE",
|
254 |
+
"name": "num_cores",
|
255 |
+
"type": "INTEGER"
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"mode": "NULLABLE",
|
259 |
+
"name": "num_cores_allowed",
|
260 |
+
"type": "INTEGER"
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"description" : "How fast are those CPUs.",
|
264 |
+
"mode": "NULLABLE",
|
265 |
+
"name": "mhz_per_cpu",
|
266 |
+
"type": "FLOAT"
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"description" : "Additional CPU info, Eg: Intel Ivybridge with HyperThreading (24 cores).",
|
270 |
+
"mode": "NULLABLE",
|
271 |
+
"name": "cpu_info",
|
272 |
+
"type": "STRING"
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"description" : "What kind of cpu scaling is enabled on the host. Eg performance, ondemand, conservative, mixed.",
|
276 |
+
"mode": "NULLABLE",
|
277 |
+
"name": "cpu_governor",
|
278 |
+
"type": "STRING"
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"description": "Cache size of the CPUs.",
|
282 |
+
"mode": "NULLABLE",
|
283 |
+
"name": "cache_size",
|
284 |
+
"type": "RECORD",
|
285 |
+
"fields": [
|
286 |
+
{
|
287 |
+
"mode": "NULLABLE",
|
288 |
+
"name": "level",
|
289 |
+
"type": "STRING"
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"mode": "NULLABLE",
|
293 |
+
"name": "size",
|
294 |
+
"type": "INTEGER"
|
295 |
+
}
|
296 |
+
]
|
297 |
+
}
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"mode": "NULLABLE",
|
302 |
+
"name": "gpu_info",
|
303 |
+
"type": "RECORD",
|
304 |
+
"fields": [
|
305 |
+
{
|
306 |
+
"mode": "NULLABLE",
|
307 |
+
"name": "count",
|
308 |
+
"type": "INTEGER"
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"mode": "NULLABLE",
|
312 |
+
"name": "model",
|
313 |
+
"type": "STRING"
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"mode": "NULLABLE",
|
317 |
+
"name": "cuda_version",
|
318 |
+
"type": "STRING"
|
319 |
+
}
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"description": "The cloud instance inforation if the benchmark run is executed on cloud",
|
324 |
+
"mode": "NULLABLE",
|
325 |
+
"name": "cloud_info",
|
326 |
+
"type": "RECORD",
|
327 |
+
"fields": [
|
328 |
+
{
|
329 |
+
"description": "The instance type, E.g. n1-standard-4.",
|
330 |
+
"mode": "NULLABLE",
|
331 |
+
"name": "instance_type",
|
332 |
+
"type": "STRING"
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"description": "The arbitrary attribute of the cloud info.",
|
336 |
+
"fields": [
|
337 |
+
{
|
338 |
+
"description": "The name of the attribute.",
|
339 |
+
"mode": "REQUIRED",
|
340 |
+
"name": "name",
|
341 |
+
"type": "STRING"
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"description": "The value of the attribute.",
|
345 |
+
"mode": "NULLABLE",
|
346 |
+
"name": "value",
|
347 |
+
"type": "STRING"
|
348 |
+
}
|
349 |
+
],
|
350 |
+
"mode": "REPEATED",
|
351 |
+
"name": "attribute",
|
352 |
+
"type": "RECORD"
|
353 |
+
}
|
354 |
+
]
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"mode": "NULLABLE",
|
358 |
+
"name": "memory_total",
|
359 |
+
"type": "INTEGER"
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"mode": "NULLABLE",
|
363 |
+
"name": "memory_available",
|
364 |
+
"type": "STRING"
|
365 |
+
}
|
366 |
+
]
|
367 |
+
}
|
368 |
+
]
|
models/official/benchmark/datastore/schema/benchmark_run_status.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"description": "The UUID of the run for the benchmark.",
|
4 |
+
"mode": "REQUIRED",
|
5 |
+
"name": "run_id",
|
6 |
+
"type": "STRING"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"description": "The status of the run for the benchmark. Eg, running, failed, success",
|
10 |
+
"mode": "REQUIRED",
|
11 |
+
"name": "status",
|
12 |
+
"type": "STRING"
|
13 |
+
}
|
14 |
+
]
|
models/official/benchmark/keras_benchmark.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Executes Keras benchmarks and accuracy tests."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import tensorflow as tf
|
22 |
+
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
|
23 |
+
from official.utils.flags import core as flags_core
|
24 |
+
|
25 |
+
|
26 |
+
class KerasBenchmark(PerfZeroBenchmark):
|
27 |
+
"""Base benchmark class with methods to simplify testing."""
|
28 |
+
|
29 |
+
def __init__(self,
|
30 |
+
output_dir=None,
|
31 |
+
default_flags=None,
|
32 |
+
flag_methods=None,
|
33 |
+
tpu=None):
|
34 |
+
super(KerasBenchmark, self).__init__(
|
35 |
+
output_dir=output_dir,
|
36 |
+
default_flags=default_flags,
|
37 |
+
flag_methods=flag_methods,
|
38 |
+
tpu=tpu)
|
39 |
+
|
40 |
+
def _report_benchmark(self,
|
41 |
+
stats,
|
42 |
+
wall_time_sec,
|
43 |
+
top_1_max=None,
|
44 |
+
top_1_min=None,
|
45 |
+
log_steps=None,
|
46 |
+
total_batch_size=None,
|
47 |
+
warmup=1,
|
48 |
+
start_time_sec=None):
|
49 |
+
"""Report benchmark results by writing to local protobuf file.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
stats: dict returned from keras models with known entries.
|
53 |
+
wall_time_sec: the during of the benchmark execution in seconds
|
54 |
+
top_1_max: highest passing level for top_1 accuracy.
|
55 |
+
top_1_min: lowest passing level for top_1 accuracy.
|
56 |
+
log_steps: How often the log was created for stats['step_timestamp_log'].
|
57 |
+
total_batch_size: Global batch-size.
|
58 |
+
warmup: number of entries in stats['step_timestamp_log'] to ignore.
|
59 |
+
start_time_sec: the start time of the program in seconds since epoch
|
60 |
+
"""
|
61 |
+
|
62 |
+
metrics = []
|
63 |
+
if 'accuracy_top_1' in stats:
|
64 |
+
metrics.append({'name': 'accuracy_top_1',
|
65 |
+
'value': stats['accuracy_top_1'],
|
66 |
+
'min_value': top_1_min,
|
67 |
+
'max_value': top_1_max})
|
68 |
+
metrics.append({'name': 'top_1_train_accuracy',
|
69 |
+
'value': stats['training_accuracy_top_1']})
|
70 |
+
|
71 |
+
if (warmup and 'step_timestamp_log' in stats and
|
72 |
+
len(stats['step_timestamp_log']) > warmup):
|
73 |
+
# first entry in the time_log is start of step 1. The rest of the
|
74 |
+
# entries are the end of each step recorded
|
75 |
+
time_log = stats['step_timestamp_log']
|
76 |
+
elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
|
77 |
+
num_examples = (
|
78 |
+
total_batch_size * log_steps * (len(time_log) - warmup - 1))
|
79 |
+
examples_per_sec = num_examples / elapsed
|
80 |
+
metrics.append({'name': 'exp_per_second',
|
81 |
+
'value': examples_per_sec})
|
82 |
+
|
83 |
+
if 'avg_exp_per_second' in stats:
|
84 |
+
metrics.append({'name': 'avg_exp_per_second',
|
85 |
+
'value': stats['avg_exp_per_second']})
|
86 |
+
|
87 |
+
if start_time_sec and 'step_timestamp_log' in stats:
|
88 |
+
time_log = stats['step_timestamp_log']
|
89 |
+
# time_log[0] is recorded at the beginning of the first step.
|
90 |
+
startup_time = time_log[0].timestamp - start_time_sec
|
91 |
+
metrics.append({'name': 'startup_time', 'value': startup_time})
|
92 |
+
|
93 |
+
flags_str = flags_core.get_nondefault_flags_as_str()
|
94 |
+
self.report_benchmark(
|
95 |
+
iters=-1,
|
96 |
+
wall_time=wall_time_sec,
|
97 |
+
metrics=metrics,
|
98 |
+
extras={'flags': flags_str})
|
models/official/benchmark/keras_cifar_benchmark.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Executes Keras benchmarks and accuracy tests."""
|
16 |
+
from __future__ import absolute_import
|
17 |
+
from __future__ import division
|
18 |
+
from __future__ import print_function
|
19 |
+
|
20 |
+
import os
|
21 |
+
import time
|
22 |
+
from absl import flags
|
23 |
+
import tensorflow as tf # pylint: disable=g-bad-import-order
|
24 |
+
|
25 |
+
from official.benchmark import keras_benchmark
|
26 |
+
from official.benchmark import benchmark_wrappers
|
27 |
+
from official.benchmark.models import resnet_cifar_main
|
28 |
+
|
29 |
+
MIN_TOP_1_ACCURACY = 0.929
|
30 |
+
MAX_TOP_1_ACCURACY = 0.938
|
31 |
+
|
32 |
+
FLAGS = flags.FLAGS
|
33 |
+
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin'
|
34 |
+
|
35 |
+
|
36 |
+
class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark):
|
37 |
+
"""Accuracy tests for ResNet56 Keras CIFAR-10."""
|
38 |
+
|
39 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
40 |
+
"""A benchmark class.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
output_dir: directory where to output e.g. log files
|
44 |
+
root_data_dir: directory under which to look for dataset
|
45 |
+
**kwargs: arbitrary named arguments. This is needed to make the
|
46 |
+
constructor forward compatible in case PerfZero provides more
|
47 |
+
named arguments before updating the constructor.
|
48 |
+
"""
|
49 |
+
|
50 |
+
self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
|
51 |
+
flag_methods = [resnet_cifar_main.define_cifar_flags]
|
52 |
+
|
53 |
+
super(Resnet56KerasAccuracy, self).__init__(
|
54 |
+
output_dir=output_dir, flag_methods=flag_methods)
|
55 |
+
|
56 |
+
def _setup(self):
|
57 |
+
super(Resnet56KerasAccuracy, self)._setup()
|
58 |
+
FLAGS.use_tensor_lr = False
|
59 |
+
|
60 |
+
def benchmark_graph_1_gpu(self):
|
61 |
+
"""Test keras based model with Keras fit and distribution strategies."""
|
62 |
+
self._setup()
|
63 |
+
FLAGS.num_gpus = 1
|
64 |
+
FLAGS.data_dir = self.data_dir
|
65 |
+
FLAGS.batch_size = 128
|
66 |
+
FLAGS.train_epochs = 182
|
67 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
|
68 |
+
FLAGS.dtype = 'fp32'
|
69 |
+
self._run_and_report_benchmark()
|
70 |
+
|
71 |
+
def benchmark_1_gpu(self):
|
72 |
+
"""Test keras based model with eager and distribution strategies."""
|
73 |
+
self._setup()
|
74 |
+
FLAGS.num_gpus = 1
|
75 |
+
FLAGS.data_dir = self.data_dir
|
76 |
+
FLAGS.batch_size = 128
|
77 |
+
FLAGS.train_epochs = 182
|
78 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
|
79 |
+
FLAGS.dtype = 'fp32'
|
80 |
+
FLAGS.enable_eager = True
|
81 |
+
self._run_and_report_benchmark()
|
82 |
+
|
83 |
+
def benchmark_cpu(self):
|
84 |
+
"""Test keras based model on CPU."""
|
85 |
+
self._setup()
|
86 |
+
FLAGS.num_gpus = 0
|
87 |
+
FLAGS.data_dir = self.data_dir
|
88 |
+
FLAGS.batch_size = 128
|
89 |
+
FLAGS.train_epochs = 182
|
90 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_cpu')
|
91 |
+
FLAGS.dtype = 'fp32'
|
92 |
+
FLAGS.enable_eager = True
|
93 |
+
FLAGS.data_format = 'channels_last'
|
94 |
+
self._run_and_report_benchmark()
|
95 |
+
|
96 |
+
def benchmark_cpu_no_dist_strat(self):
|
97 |
+
"""Test keras based model on CPU without distribution strategies."""
|
98 |
+
self._setup()
|
99 |
+
FLAGS.num_gpus = 0
|
100 |
+
FLAGS.data_dir = self.data_dir
|
101 |
+
FLAGS.batch_size = 128
|
102 |
+
FLAGS.train_epochs = 182
|
103 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat')
|
104 |
+
FLAGS.dtype = 'fp32'
|
105 |
+
FLAGS.enable_eager = True
|
106 |
+
FLAGS.distribution_strategy = 'off'
|
107 |
+
FLAGS.data_format = 'channels_last'
|
108 |
+
self._run_and_report_benchmark()
|
109 |
+
|
110 |
+
def benchmark_cpu_no_dist_strat_run_eagerly(self):
|
111 |
+
"""Test keras based model on CPU w/forced eager and no dist_strat."""
|
112 |
+
self._setup()
|
113 |
+
FLAGS.num_gpus = 0
|
114 |
+
FLAGS.data_dir = self.data_dir
|
115 |
+
FLAGS.batch_size = 128
|
116 |
+
FLAGS.train_epochs = 182
|
117 |
+
FLAGS.model_dir = self._get_model_dir(
|
118 |
+
'benchmark_cpu_no_dist_strat_run_eagerly')
|
119 |
+
FLAGS.dtype = 'fp32'
|
120 |
+
FLAGS.enable_eager = True
|
121 |
+
FLAGS.run_eagerly = True
|
122 |
+
FLAGS.distribution_strategy = 'off'
|
123 |
+
FLAGS.data_format = 'channels_last'
|
124 |
+
self._run_and_report_benchmark()
|
125 |
+
|
126 |
+
def benchmark_1_gpu_no_dist_strat(self):
|
127 |
+
"""Test keras based model with eager and no dist strat."""
|
128 |
+
self._setup()
|
129 |
+
FLAGS.num_gpus = 1
|
130 |
+
FLAGS.data_dir = self.data_dir
|
131 |
+
FLAGS.batch_size = 128
|
132 |
+
FLAGS.train_epochs = 182
|
133 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
|
134 |
+
FLAGS.dtype = 'fp32'
|
135 |
+
FLAGS.enable_eager = True
|
136 |
+
FLAGS.distribution_strategy = 'off'
|
137 |
+
self._run_and_report_benchmark()
|
138 |
+
|
139 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
|
140 |
+
"""Test keras based model w/forced eager and no dist_strat."""
|
141 |
+
self._setup()
|
142 |
+
FLAGS.num_gpus = 1
|
143 |
+
FLAGS.data_dir = self.data_dir
|
144 |
+
FLAGS.batch_size = 128
|
145 |
+
FLAGS.train_epochs = 182
|
146 |
+
FLAGS.model_dir = self._get_model_dir(
|
147 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly')
|
148 |
+
FLAGS.dtype = 'fp32'
|
149 |
+
FLAGS.enable_eager = True
|
150 |
+
FLAGS.run_eagerly = True
|
151 |
+
FLAGS.distribution_strategy = 'off'
|
152 |
+
self._run_and_report_benchmark()
|
153 |
+
|
154 |
+
def benchmark_graph_1_gpu_no_dist_strat(self):
|
155 |
+
"""Test keras based model with Keras fit but not distribution strategies."""
|
156 |
+
self._setup()
|
157 |
+
FLAGS.distribution_strategy = 'off'
|
158 |
+
FLAGS.num_gpus = 1
|
159 |
+
FLAGS.data_dir = self.data_dir
|
160 |
+
FLAGS.batch_size = 128
|
161 |
+
FLAGS.train_epochs = 182
|
162 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
|
163 |
+
FLAGS.dtype = 'fp32'
|
164 |
+
self._run_and_report_benchmark()
|
165 |
+
|
166 |
+
def benchmark_2_gpu(self):
|
167 |
+
"""Test keras based model with eager and distribution strategies."""
|
168 |
+
self._setup()
|
169 |
+
FLAGS.num_gpus = 2
|
170 |
+
FLAGS.data_dir = self.data_dir
|
171 |
+
FLAGS.batch_size = 128
|
172 |
+
FLAGS.train_epochs = 182
|
173 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
|
174 |
+
FLAGS.dtype = 'fp32'
|
175 |
+
FLAGS.enable_eager = True
|
176 |
+
self._run_and_report_benchmark()
|
177 |
+
|
178 |
+
def benchmark_graph_2_gpu(self):
|
179 |
+
"""Test keras based model with Keras fit and distribution strategies."""
|
180 |
+
self._setup()
|
181 |
+
FLAGS.num_gpus = 2
|
182 |
+
FLAGS.data_dir = self.data_dir
|
183 |
+
FLAGS.batch_size = 128
|
184 |
+
FLAGS.train_epochs = 182
|
185 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
|
186 |
+
FLAGS.dtype = 'fp32'
|
187 |
+
self._run_and_report_benchmark()
|
188 |
+
|
189 |
+
@benchmark_wrappers.enable_runtime_flags
|
190 |
+
def _run_and_report_benchmark(self):
|
191 |
+
start_time_sec = time.time()
|
192 |
+
stats = resnet_cifar_main.run(FLAGS)
|
193 |
+
wall_time_sec = time.time() - start_time_sec
|
194 |
+
|
195 |
+
super(Resnet56KerasAccuracy, self)._report_benchmark(
|
196 |
+
stats,
|
197 |
+
wall_time_sec,
|
198 |
+
top_1_min=MIN_TOP_1_ACCURACY,
|
199 |
+
top_1_max=MAX_TOP_1_ACCURACY,
|
200 |
+
total_batch_size=FLAGS.batch_size,
|
201 |
+
log_steps=100)
|
202 |
+
|
203 |
+
|
204 |
+
class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
|
205 |
+
"""Short performance tests for ResNet56 via Keras and CIFAR-10."""
|
206 |
+
|
207 |
+
def __init__(self, output_dir=None, default_flags=None):
|
208 |
+
flag_methods = [resnet_cifar_main.define_cifar_flags]
|
209 |
+
|
210 |
+
super(Resnet56KerasBenchmarkBase, self).__init__(
|
211 |
+
output_dir=output_dir,
|
212 |
+
flag_methods=flag_methods,
|
213 |
+
default_flags=default_flags)
|
214 |
+
|
215 |
+
@benchmark_wrappers.enable_runtime_flags
|
216 |
+
def _run_and_report_benchmark(self):
|
217 |
+
start_time_sec = time.time()
|
218 |
+
stats = resnet_cifar_main.run(FLAGS)
|
219 |
+
wall_time_sec = time.time() - start_time_sec
|
220 |
+
|
221 |
+
super(Resnet56KerasBenchmarkBase, self)._report_benchmark(
|
222 |
+
stats,
|
223 |
+
wall_time_sec,
|
224 |
+
total_batch_size=FLAGS.batch_size,
|
225 |
+
log_steps=FLAGS.log_steps)
|
226 |
+
|
227 |
+
def benchmark_1_gpu(self):
|
228 |
+
"""Test 1 gpu."""
|
229 |
+
self._setup()
|
230 |
+
FLAGS.num_gpus = 1
|
231 |
+
FLAGS.enable_eager = True
|
232 |
+
FLAGS.distribution_strategy = 'one_device'
|
233 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
|
234 |
+
FLAGS.batch_size = 128
|
235 |
+
self._run_and_report_benchmark()
|
236 |
+
|
237 |
+
def benchmark_1_gpu_xla(self):
|
238 |
+
"""Test 1 gpu with xla enabled."""
|
239 |
+
self._setup()
|
240 |
+
FLAGS.num_gpus = 1
|
241 |
+
FLAGS.enable_eager = True
|
242 |
+
FLAGS.run_eagerly = False
|
243 |
+
FLAGS.enable_xla = True
|
244 |
+
FLAGS.distribution_strategy = 'one_device'
|
245 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla')
|
246 |
+
FLAGS.batch_size = 128
|
247 |
+
self._run_and_report_benchmark()
|
248 |
+
|
249 |
+
def benchmark_graph_1_gpu(self):
|
250 |
+
"""Test 1 gpu graph."""
|
251 |
+
self._setup()
|
252 |
+
FLAGS.num_gpus = 1
|
253 |
+
FLAGS.enable_eager = False
|
254 |
+
FLAGS.run_eagerly = False
|
255 |
+
FLAGS.distribution_strategy = 'one_device'
|
256 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
|
257 |
+
FLAGS.batch_size = 128
|
258 |
+
self._run_and_report_benchmark()
|
259 |
+
|
260 |
+
def benchmark_1_gpu_no_dist_strat(self):
|
261 |
+
"""Test 1 gpu without distribution strategies."""
|
262 |
+
self._setup()
|
263 |
+
FLAGS.num_gpus = 1
|
264 |
+
FLAGS.enable_eager = True
|
265 |
+
FLAGS.distribution_strategy = 'off'
|
266 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
|
267 |
+
FLAGS.batch_size = 128
|
268 |
+
self._run_and_report_benchmark()
|
269 |
+
|
270 |
+
def benchmark_graph_1_gpu_no_dist_strat(self):
|
271 |
+
"""Test 1 gpu graph mode without distribution strategies."""
|
272 |
+
self._setup()
|
273 |
+
FLAGS.num_gpus = 1
|
274 |
+
FLAGS.enable_eager = False
|
275 |
+
FLAGS.distribution_strategy = 'off'
|
276 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
|
277 |
+
FLAGS.batch_size = 128
|
278 |
+
self._run_and_report_benchmark()
|
279 |
+
|
280 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
|
281 |
+
"""Test 1 gpu without distribution strategy and forced eager."""
|
282 |
+
self._setup()
|
283 |
+
FLAGS.num_gpus = 1
|
284 |
+
FLAGS.batch_size = 128
|
285 |
+
FLAGS.model_dir = self._get_model_dir(
|
286 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly')
|
287 |
+
FLAGS.dtype = 'fp32'
|
288 |
+
FLAGS.enable_eager = True
|
289 |
+
FLAGS.run_eagerly = True
|
290 |
+
FLAGS.distribution_strategy = 'off'
|
291 |
+
self._run_and_report_benchmark()
|
292 |
+
|
293 |
+
def benchmark_2_gpu(self):
|
294 |
+
"""Test 2 gpu."""
|
295 |
+
self._setup()
|
296 |
+
FLAGS.num_gpus = 2
|
297 |
+
FLAGS.enable_eager = True
|
298 |
+
FLAGS.run_eagerly = False
|
299 |
+
FLAGS.distribution_strategy = 'mirrored'
|
300 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
|
301 |
+
FLAGS.batch_size = 128 * 2 # 2 GPUs
|
302 |
+
self._run_and_report_benchmark()
|
303 |
+
|
304 |
+
def benchmark_graph_2_gpu(self):
|
305 |
+
"""Test 2 gpu graph mode."""
|
306 |
+
self._setup()
|
307 |
+
FLAGS.num_gpus = 2
|
308 |
+
FLAGS.enable_eager = False
|
309 |
+
FLAGS.run_eagerly = False
|
310 |
+
FLAGS.distribution_strategy = 'mirrored'
|
311 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
|
312 |
+
FLAGS.batch_size = 128 * 2 # 2 GPUs
|
313 |
+
self._run_and_report_benchmark()
|
314 |
+
|
315 |
+
def benchmark_cpu(self):
|
316 |
+
"""Test cpu."""
|
317 |
+
self._setup()
|
318 |
+
FLAGS.num_gpus = 0
|
319 |
+
FLAGS.enable_eager = True
|
320 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_cpu')
|
321 |
+
FLAGS.batch_size = 128
|
322 |
+
FLAGS.data_format = 'channels_last'
|
323 |
+
self._run_and_report_benchmark()
|
324 |
+
|
325 |
+
def benchmark_graph_cpu(self):
|
326 |
+
"""Test cpu graph mode."""
|
327 |
+
self._setup()
|
328 |
+
FLAGS.num_gpus = 0
|
329 |
+
FLAGS.enable_eager = False
|
330 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu')
|
331 |
+
FLAGS.batch_size = 128
|
332 |
+
FLAGS.data_format = 'channels_last'
|
333 |
+
self._run_and_report_benchmark()
|
334 |
+
|
335 |
+
def benchmark_cpu_no_dist_strat_run_eagerly(self):
|
336 |
+
"""Test cpu without distribution strategy and forced eager."""
|
337 |
+
self._setup()
|
338 |
+
FLAGS.num_gpus = 0
|
339 |
+
FLAGS.distribution_strategy = 'off'
|
340 |
+
FLAGS.enable_eager = True
|
341 |
+
FLAGS.run_eagerly = True
|
342 |
+
FLAGS.model_dir = self._get_model_dir(
|
343 |
+
'benchmark_cpu_no_dist_strat_run_eagerly')
|
344 |
+
FLAGS.batch_size = 128
|
345 |
+
FLAGS.data_format = 'channels_last'
|
346 |
+
self._run_and_report_benchmark()
|
347 |
+
|
348 |
+
def benchmark_cpu_no_dist_strat(self):
|
349 |
+
"""Test cpu without distribution strategies."""
|
350 |
+
self._setup()
|
351 |
+
FLAGS.num_gpus = 0
|
352 |
+
FLAGS.enable_eager = True
|
353 |
+
FLAGS.distribution_strategy = 'off'
|
354 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat')
|
355 |
+
FLAGS.batch_size = 128
|
356 |
+
FLAGS.data_format = 'channels_last'
|
357 |
+
self._run_and_report_benchmark()
|
358 |
+
|
359 |
+
def benchmark_graph_cpu_no_dist_strat(self):
|
360 |
+
"""Test cpu graph mode without distribution strategies."""
|
361 |
+
self._setup()
|
362 |
+
FLAGS.num_gpus = 0
|
363 |
+
FLAGS.enable_eager = False
|
364 |
+
FLAGS.distribution_strategy = 'off'
|
365 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu_no_dist_strat')
|
366 |
+
FLAGS.batch_size = 128
|
367 |
+
FLAGS.data_format = 'channels_last'
|
368 |
+
self._run_and_report_benchmark()
|
369 |
+
|
370 |
+
|
371 |
+
class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase):
|
372 |
+
"""Synthetic benchmarks for ResNet56 and Keras."""
|
373 |
+
|
374 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
375 |
+
default_flags = {}
|
376 |
+
default_flags['skip_eval'] = True
|
377 |
+
default_flags['use_synthetic_data'] = True
|
378 |
+
default_flags['train_steps'] = 110
|
379 |
+
default_flags['log_steps'] = 10
|
380 |
+
default_flags['use_tensor_lr'] = False
|
381 |
+
|
382 |
+
super(Resnet56KerasBenchmarkSynth, self).__init__(
|
383 |
+
output_dir=output_dir, default_flags=default_flags)
|
384 |
+
|
385 |
+
|
386 |
+
class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase):
|
387 |
+
"""Real data benchmarks for ResNet56 and Keras."""
|
388 |
+
|
389 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
390 |
+
default_flags = {}
|
391 |
+
default_flags['skip_eval'] = True
|
392 |
+
default_flags['data_dir'] = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
|
393 |
+
default_flags['train_steps'] = 110
|
394 |
+
default_flags['log_steps'] = 10
|
395 |
+
default_flags['use_tensor_lr'] = False
|
396 |
+
|
397 |
+
super(Resnet56KerasBenchmarkReal, self).__init__(
|
398 |
+
output_dir=output_dir, default_flags=default_flags)
|
399 |
+
|
400 |
+
|
401 |
+
if __name__ == '__main__':
|
402 |
+
tf.test.main()
|
models/official/benchmark/keras_imagenet_benchmark.py
ADDED
@@ -0,0 +1,1724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ==============================================================================
|
16 |
+
"""Executes Keras benchmarks and accuracy tests."""
|
17 |
+
# pylint: disable=line-too-long
|
18 |
+
from __future__ import print_function
|
19 |
+
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import time
|
23 |
+
|
24 |
+
from typing import Any, MutableMapping, Optional
|
25 |
+
|
26 |
+
from absl import flags
|
27 |
+
import tensorflow as tf # pylint: disable=g-bad-import-order
|
28 |
+
|
29 |
+
from official.benchmark import benchmark_wrappers
|
30 |
+
from official.benchmark import keras_benchmark
|
31 |
+
from official.benchmark.models import resnet_imagenet_main
|
32 |
+
from official.vision.image_classification import classifier_trainer
|
33 |
+
|
34 |
+
MIN_TOP_1_ACCURACY = 0.76
|
35 |
+
MAX_TOP_1_ACCURACY = 0.77
|
36 |
+
|
37 |
+
MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65
|
38 |
+
MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68
|
39 |
+
|
40 |
+
# Range of top-1 accracies for model optimization techniques.
|
41 |
+
# Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY).
|
42 |
+
MODEL_OPTIMIZATION_TOP_1_ACCURACY = {
|
43 |
+
'RESNET50_FINETUNE_PRUNING': (0.76, 0.77),
|
44 |
+
'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68),
|
45 |
+
}
|
46 |
+
|
47 |
+
FLAGS = flags.FLAGS
|
48 |
+
|
49 |
+
|
50 |
+
def _get_classifier_parameters(
|
51 |
+
num_gpus: int = 0,
|
52 |
+
builder: str = 'records',
|
53 |
+
skip_eval: bool = False,
|
54 |
+
distribution_strategy: str = 'mirrored',
|
55 |
+
per_replica_batch_size: int = 128,
|
56 |
+
epochs: int = 90,
|
57 |
+
steps: int = 0,
|
58 |
+
epochs_between_evals: int = 1,
|
59 |
+
dtype: str = 'float32',
|
60 |
+
enable_xla: bool = False,
|
61 |
+
run_eagerly: bool = False,
|
62 |
+
gpu_thread_mode: Optional[str] = None,
|
63 |
+
dataset_num_private_threads: Optional[int] = None,
|
64 |
+
loss_scale: Optional[str] = None,
|
65 |
+
report_metrics: bool = True,
|
66 |
+
batchnorm_spatial_persistent: bool = False) -> MutableMapping[str, Any]:
|
67 |
+
"""Gets classifier trainer's ResNet parameters."""
|
68 |
+
return {
|
69 |
+
'runtime': {
|
70 |
+
'num_gpus': num_gpus,
|
71 |
+
'distribution_strategy': distribution_strategy,
|
72 |
+
'run_eagerly': run_eagerly,
|
73 |
+
'enable_xla': enable_xla,
|
74 |
+
'dataset_num_private_threads': dataset_num_private_threads,
|
75 |
+
'gpu_thread_mode': gpu_thread_mode,
|
76 |
+
'loss_scale': loss_scale,
|
77 |
+
'batchnorm_spatial_persistent': batchnorm_spatial_persistent,
|
78 |
+
},
|
79 |
+
'train_dataset': {
|
80 |
+
'builder': builder,
|
81 |
+
'use_per_replica_batch_size': True,
|
82 |
+
'batch_size': per_replica_batch_size,
|
83 |
+
'image_size': 224,
|
84 |
+
'dtype': dtype,
|
85 |
+
},
|
86 |
+
'validation_dataset': {
|
87 |
+
'builder': builder,
|
88 |
+
'batch_size': per_replica_batch_size,
|
89 |
+
'use_per_replica_batch_size': True,
|
90 |
+
'image_size': 224,
|
91 |
+
'dtype': dtype,
|
92 |
+
},
|
93 |
+
'train': {
|
94 |
+
'epochs': epochs,
|
95 |
+
'steps': steps,
|
96 |
+
'callbacks': {
|
97 |
+
'enable_tensorboard': False,
|
98 |
+
'enable_checkpoint_and_export': False,
|
99 |
+
'enable_time_history': True,
|
100 |
+
},
|
101 |
+
'metrics': ['accuracy'] if report_metrics else [],
|
102 |
+
},
|
103 |
+
'model': {
|
104 |
+
'loss': {
|
105 |
+
'label_smoothing': 0.1,
|
106 |
+
},
|
107 |
+
},
|
108 |
+
'evaluation': {
|
109 |
+
'epochs_between_evals': epochs_between_evals,
|
110 |
+
'skip_eval': skip_eval,
|
111 |
+
},
|
112 |
+
}
|
113 |
+
|
114 |
+
|
115 |
+
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
|
116 |
+
"""Benchmark accuracy tests for ResNet50 in Keras."""
|
117 |
+
|
118 |
+
def __init__(self,
|
119 |
+
output_dir: Optional[str] = None,
|
120 |
+
root_data_dir: Optional[str] = None,
|
121 |
+
**kwargs):
|
122 |
+
"""A benchmark class.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
output_dir: directory where to output e.g. log files
|
126 |
+
root_data_dir: directory under which to look for dataset
|
127 |
+
**kwargs: arbitrary named arguments. This is needed to make the
|
128 |
+
constructor forward compatible in case PerfZero provides more
|
129 |
+
named arguments before updating the constructor.
|
130 |
+
"""
|
131 |
+
|
132 |
+
flag_methods = [classifier_trainer.define_classifier_flags]
|
133 |
+
|
134 |
+
self.data_dir = os.path.join(root_data_dir, 'imagenet')
|
135 |
+
super(Resnet50KerasAccuracy, self).__init__(
|
136 |
+
output_dir=output_dir, flag_methods=flag_methods)
|
137 |
+
|
138 |
+
@benchmark_wrappers.enable_runtime_flags
|
139 |
+
def _run_and_report_benchmark(
|
140 |
+
self,
|
141 |
+
experiment_name: str,
|
142 |
+
top_1_min: float = MIN_TOP_1_ACCURACY,
|
143 |
+
top_1_max: float = MAX_TOP_1_ACCURACY,
|
144 |
+
num_gpus: int = 0,
|
145 |
+
distribution_strategy: str = 'mirrored',
|
146 |
+
per_replica_batch_size: int = 128,
|
147 |
+
epochs: int = 90,
|
148 |
+
steps: int = 0,
|
149 |
+
epochs_between_evals: int = 1,
|
150 |
+
dtype: str = 'float32',
|
151 |
+
enable_xla: bool = False,
|
152 |
+
run_eagerly: bool = False,
|
153 |
+
gpu_thread_mode: Optional[str] = None,
|
154 |
+
dataset_num_private_threads: Optional[int] = None,
|
155 |
+
loss_scale: Optional[str] = None):
|
156 |
+
"""Runs and reports the benchmark given the provided configuration."""
|
157 |
+
FLAGS.model_type = 'resnet'
|
158 |
+
FLAGS.dataset = 'imagenet'
|
159 |
+
FLAGS.mode = 'train_and_eval'
|
160 |
+
FLAGS.data_dir = self.data_dir
|
161 |
+
FLAGS.model_dir = self._get_model_dir(experiment_name)
|
162 |
+
parameters = _get_classifier_parameters(
|
163 |
+
num_gpus=num_gpus,
|
164 |
+
distribution_strategy=distribution_strategy,
|
165 |
+
per_replica_batch_size=per_replica_batch_size,
|
166 |
+
epochs=epochs,
|
167 |
+
steps=steps,
|
168 |
+
epochs_between_evals=epochs_between_evals,
|
169 |
+
dtype=dtype,
|
170 |
+
enable_xla=enable_xla,
|
171 |
+
run_eagerly=run_eagerly,
|
172 |
+
gpu_thread_mode=gpu_thread_mode,
|
173 |
+
dataset_num_private_threads=dataset_num_private_threads,
|
174 |
+
report_metrics=True,
|
175 |
+
loss_scale=loss_scale,
|
176 |
+
batchnorm_spatial_persistent=True)
|
177 |
+
FLAGS.params_override = json.dumps(parameters)
|
178 |
+
total_batch_size = num_gpus * per_replica_batch_size
|
179 |
+
|
180 |
+
start_time_sec = time.time()
|
181 |
+
stats = classifier_trainer.run(flags.FLAGS)
|
182 |
+
wall_time_sec = time.time() - start_time_sec
|
183 |
+
|
184 |
+
super(Resnet50KerasAccuracy, self)._report_benchmark(
|
185 |
+
stats,
|
186 |
+
wall_time_sec,
|
187 |
+
top_1_min=top_1_min,
|
188 |
+
top_1_max=top_1_max,
|
189 |
+
total_batch_size=total_batch_size,
|
190 |
+
log_steps=100)
|
191 |
+
|
192 |
+
def benchmark_8_gpu(self):
|
193 |
+
"""Tests Keras model with eager, dist_strat and 8 GPUs."""
|
194 |
+
self._setup()
|
195 |
+
self._run_and_report_benchmark(
|
196 |
+
experiment_name='benchmark_8_gpu',
|
197 |
+
num_gpus=8,
|
198 |
+
per_replica_batch_size=128,
|
199 |
+
epochs=90,
|
200 |
+
epochs_between_evals=10,
|
201 |
+
dtype='float32')
|
202 |
+
|
203 |
+
def benchmark_8_gpu_fp16(self):
|
204 |
+
"""Tests Keras model with eager, dist_strat, 8 GPUs, and fp16."""
|
205 |
+
self._setup()
|
206 |
+
self._run_and_report_benchmark(
|
207 |
+
experiment_name='benchmark_8_gpu_fp16',
|
208 |
+
num_gpus=8,
|
209 |
+
per_replica_batch_size=256,
|
210 |
+
epochs=90,
|
211 |
+
epochs_between_evals=10,
|
212 |
+
dtype='float16')
|
213 |
+
|
214 |
+
def benchmark_xla_8_gpu_fp16(self):
|
215 |
+
"""Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
|
216 |
+
self._setup()
|
217 |
+
self._run_and_report_benchmark(
|
218 |
+
experiment_name='benchmark_xla_8_gpu_fp16',
|
219 |
+
num_gpus=8,
|
220 |
+
per_replica_batch_size=256,
|
221 |
+
epochs=90,
|
222 |
+
epochs_between_evals=10,
|
223 |
+
dtype='float16',
|
224 |
+
enable_xla=True)
|
225 |
+
|
226 |
+
def benchmark_xla_8_gpu_fp16_dynamic(self):
|
227 |
+
"""Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
|
228 |
+
self._setup()
|
229 |
+
self._run_and_report_benchmark(
|
230 |
+
experiment_name='benchmark_xla_8_gpu_fp16_dynamic',
|
231 |
+
top_1_min=0.736,
|
232 |
+
num_gpus=8,
|
233 |
+
per_replica_batch_size=256,
|
234 |
+
epochs=90,
|
235 |
+
epochs_between_evals=10,
|
236 |
+
dtype='float16',
|
237 |
+
loss_scale='dynamic')
|
238 |
+
|
239 |
+
def _get_model_dir(self, folder_name):
|
240 |
+
return os.path.join(self.output_dir, folder_name)
|
241 |
+
|
242 |
+
|
243 |
+
class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark):
|
244 |
+
"""Benchmark accuracy tests for MobilenetV1 in Keras."""
|
245 |
+
|
246 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
247 |
+
"""A benchmark class.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
output_dir: directory where to output e.g. log files
|
251 |
+
root_data_dir: directory under which to look for dataset
|
252 |
+
**kwargs: arbitrary named arguments. This is needed to make the
|
253 |
+
constructor forward compatible in case PerfZero provides more
|
254 |
+
named arguments before updating the constructor.
|
255 |
+
"""
|
256 |
+
|
257 |
+
flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
|
258 |
+
|
259 |
+
self.data_dir = os.path.join(root_data_dir, 'imagenet')
|
260 |
+
super(MobilenetV1KerasAccuracy, self).__init__(
|
261 |
+
output_dir=output_dir,
|
262 |
+
flag_methods=flag_methods,
|
263 |
+
default_flags={
|
264 |
+
'model': 'mobilenet',
|
265 |
+
'optimizer': 'mobilenet_default',
|
266 |
+
'initial_learning_rate_per_sample': 0.00039,
|
267 |
+
})
|
268 |
+
|
269 |
+
def benchmark_8_gpu(self):
|
270 |
+
"""Test Keras model with eager, dist_strat and 8 GPUs."""
|
271 |
+
self._setup()
|
272 |
+
FLAGS.num_gpus = 8
|
273 |
+
FLAGS.data_dir = self.data_dir
|
274 |
+
FLAGS.batch_size = 128 * 8
|
275 |
+
FLAGS.train_epochs = 90
|
276 |
+
FLAGS.epochs_between_evals = 10
|
277 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
|
278 |
+
FLAGS.dtype = 'fp32'
|
279 |
+
FLAGS.enable_eager = True
|
280 |
+
self._run_and_report_benchmark()
|
281 |
+
|
282 |
+
@benchmark_wrappers.enable_runtime_flags
|
283 |
+
def _run_and_report_benchmark(self,
|
284 |
+
top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY,
|
285 |
+
top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY):
|
286 |
+
start_time_sec = time.time()
|
287 |
+
stats = resnet_imagenet_main.run(flags.FLAGS)
|
288 |
+
wall_time_sec = time.time() - start_time_sec
|
289 |
+
|
290 |
+
super(MobilenetV1KerasAccuracy, self)._report_benchmark(
|
291 |
+
stats,
|
292 |
+
wall_time_sec,
|
293 |
+
top_1_min=top_1_min,
|
294 |
+
top_1_max=top_1_max,
|
295 |
+
total_batch_size=FLAGS.batch_size,
|
296 |
+
log_steps=100)
|
297 |
+
|
298 |
+
def _get_model_dir(self, folder_name):
|
299 |
+
return os.path.join(self.output_dir, folder_name)
|
300 |
+
|
301 |
+
|
302 |
+
class Resnet50KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark):
|
303 |
+
"""Resnet50 (classifier_trainer) benchmarks."""
|
304 |
+
|
305 |
+
def __init__(self, output_dir=None, default_flags=None,
|
306 |
+
tpu=None, dataset_builder='records', train_epochs=1,
|
307 |
+
train_steps=110, data_dir=None):
|
308 |
+
flag_methods = [classifier_trainer.define_classifier_flags]
|
309 |
+
|
310 |
+
self.dataset_builder = dataset_builder
|
311 |
+
self.train_epochs = train_epochs
|
312 |
+
self.train_steps = train_steps
|
313 |
+
self.data_dir = data_dir
|
314 |
+
|
315 |
+
super(Resnet50KerasClassifierBenchmarkBase, self).__init__(
|
316 |
+
output_dir=output_dir,
|
317 |
+
flag_methods=flag_methods,
|
318 |
+
default_flags=default_flags,
|
319 |
+
tpu=tpu)
|
320 |
+
|
321 |
+
@benchmark_wrappers.enable_runtime_flags
|
322 |
+
def _run_and_report_benchmark(
|
323 |
+
self,
|
324 |
+
experiment_name: str,
|
325 |
+
skip_steps: Optional[int] = None,
|
326 |
+
top_1_min: float = MIN_TOP_1_ACCURACY,
|
327 |
+
top_1_max: float = MAX_TOP_1_ACCURACY,
|
328 |
+
num_gpus: int = 0,
|
329 |
+
num_tpus: int = 0,
|
330 |
+
distribution_strategy: str = 'mirrored',
|
331 |
+
per_replica_batch_size: int = 128,
|
332 |
+
epochs_between_evals: int = 1,
|
333 |
+
dtype: str = 'float32',
|
334 |
+
enable_xla: bool = False,
|
335 |
+
run_eagerly: bool = False,
|
336 |
+
gpu_thread_mode: Optional[str] = None,
|
337 |
+
dataset_num_private_threads: Optional[int] = None,
|
338 |
+
loss_scale: Optional[str] = None):
|
339 |
+
"""Runs and reports the benchmark given the provided configuration."""
|
340 |
+
FLAGS.model_type = 'resnet'
|
341 |
+
FLAGS.dataset = 'imagenet'
|
342 |
+
FLAGS.mode = 'train_and_eval'
|
343 |
+
FLAGS.data_dir = self.data_dir
|
344 |
+
FLAGS.model_dir = self._get_model_dir(experiment_name)
|
345 |
+
parameters = _get_classifier_parameters(
|
346 |
+
builder=self.dataset_builder,
|
347 |
+
skip_eval=True,
|
348 |
+
num_gpus=num_gpus,
|
349 |
+
distribution_strategy=distribution_strategy,
|
350 |
+
per_replica_batch_size=per_replica_batch_size,
|
351 |
+
epochs=self.train_epochs,
|
352 |
+
steps=self.train_steps,
|
353 |
+
epochs_between_evals=epochs_between_evals,
|
354 |
+
dtype=dtype,
|
355 |
+
enable_xla=enable_xla,
|
356 |
+
gpu_thread_mode=gpu_thread_mode,
|
357 |
+
dataset_num_private_threads=dataset_num_private_threads,
|
358 |
+
loss_scale=loss_scale,
|
359 |
+
report_metrics=False,
|
360 |
+
batchnorm_spatial_persistent=True)
|
361 |
+
FLAGS.params_override = json.dumps(parameters)
|
362 |
+
if distribution_strategy == 'tpu':
|
363 |
+
total_batch_size = num_tpus * per_replica_batch_size
|
364 |
+
else:
|
365 |
+
total_batch_size = num_gpus * per_replica_batch_size
|
366 |
+
|
367 |
+
start_time_sec = time.time()
|
368 |
+
stats = classifier_trainer.run(flags.FLAGS)
|
369 |
+
wall_time_sec = time.time() - start_time_sec
|
370 |
+
# Number of logged step time entries that are excluded in performance
|
371 |
+
# report. We keep results from last 100 batches, or skip the steps based on
|
372 |
+
# input skip_steps.
|
373 |
+
warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps
|
374 |
+
|
375 |
+
super(Resnet50KerasClassifierBenchmarkBase, self)._report_benchmark(
|
376 |
+
stats,
|
377 |
+
wall_time_sec,
|
378 |
+
total_batch_size=total_batch_size,
|
379 |
+
log_steps=FLAGS.log_steps,
|
380 |
+
warmup=warmup,
|
381 |
+
start_time_sec=start_time_sec)
|
382 |
+
|
383 |
+
def benchmark_1_gpu_no_dist_strat(self):
|
384 |
+
"""Tests Keras model with 1 GPU, no distribution strategy."""
|
385 |
+
self._setup()
|
386 |
+
self._run_and_report_benchmark(
|
387 |
+
experiment_name='benchmark_1_gpu_no_dist_strat',
|
388 |
+
num_gpus=1,
|
389 |
+
distribution_strategy='off',
|
390 |
+
per_replica_batch_size=128)
|
391 |
+
|
392 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
|
393 |
+
"""Tests Keras model with 1 GPU, no distribution strategy, run eagerly."""
|
394 |
+
self._setup()
|
395 |
+
self._run_and_report_benchmark(
|
396 |
+
experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly',
|
397 |
+
num_gpus=1,
|
398 |
+
run_eagerly=True,
|
399 |
+
distribution_strategy='off',
|
400 |
+
per_replica_batch_size=64)
|
401 |
+
|
402 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
|
403 |
+
"""Tests with 1 GPU, no distribution strategy, fp16, run eagerly."""
|
404 |
+
self._setup()
|
405 |
+
self._run_and_report_benchmark(
|
406 |
+
experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16',
|
407 |
+
num_gpus=1,
|
408 |
+
run_eagerly=True,
|
409 |
+
distribution_strategy='off',
|
410 |
+
dtype='float16',
|
411 |
+
per_replica_batch_size=128)
|
412 |
+
|
413 |
+
def benchmark_1_gpu(self):
|
414 |
+
"""Tests Keras model with 1 GPU."""
|
415 |
+
self._setup()
|
416 |
+
self._run_and_report_benchmark(
|
417 |
+
experiment_name='benchmark_1_gpu',
|
418 |
+
num_gpus=1,
|
419 |
+
distribution_strategy='one_device',
|
420 |
+
per_replica_batch_size=128)
|
421 |
+
|
422 |
+
def benchmark_xla_1_gpu(self):
|
423 |
+
"""Tests Keras model with XLA and 1 GPU."""
|
424 |
+
self._setup()
|
425 |
+
self._run_and_report_benchmark(
|
426 |
+
experiment_name='benchmark_xla_1_gpu',
|
427 |
+
num_gpus=1,
|
428 |
+
enable_xla=True,
|
429 |
+
distribution_strategy='one_device',
|
430 |
+
per_replica_batch_size=128)
|
431 |
+
|
432 |
+
def benchmark_1_gpu_fp16(self):
|
433 |
+
"""Tests Keras model with 1 GPU and fp16."""
|
434 |
+
self._setup()
|
435 |
+
self._run_and_report_benchmark(
|
436 |
+
experiment_name='benchmark_1_gpu_fp16',
|
437 |
+
num_gpus=1,
|
438 |
+
distribution_strategy='one_device',
|
439 |
+
dtype='float16',
|
440 |
+
per_replica_batch_size=256)
|
441 |
+
|
442 |
+
def benchmark_1_gpu_fp16_dynamic(self):
|
443 |
+
"""Tests Keras model with 1 GPU, fp16, and dynamic loss scaling."""
|
444 |
+
self._setup()
|
445 |
+
self._run_and_report_benchmark(
|
446 |
+
experiment_name='benchmark_1_gpu_fp16_dynamic',
|
447 |
+
num_gpus=1,
|
448 |
+
distribution_strategy='one_device',
|
449 |
+
dtype='float16',
|
450 |
+
per_replica_batch_size=256,
|
451 |
+
loss_scale='dynamic')
|
452 |
+
|
453 |
+
def benchmark_xla_1_gpu_fp16(self):
|
454 |
+
"""Tests Keras model with XLA, 1 GPU and fp16."""
|
455 |
+
self._setup()
|
456 |
+
self._run_and_report_benchmark(
|
457 |
+
experiment_name='benchmark_xla_1_gpu_fp16',
|
458 |
+
num_gpus=1,
|
459 |
+
enable_xla=True,
|
460 |
+
distribution_strategy='one_device',
|
461 |
+
dtype='float16',
|
462 |
+
per_replica_batch_size=256)
|
463 |
+
|
464 |
+
def benchmark_xla_1_gpu_fp16_tweaked(self):
|
465 |
+
"""Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
|
466 |
+
self._setup()
|
467 |
+
self._run_and_report_benchmark(
|
468 |
+
experiment_name='benchmark_xla_1_gpu_fp16_tweaked',
|
469 |
+
num_gpus=1,
|
470 |
+
enable_xla=True,
|
471 |
+
distribution_strategy='one_device',
|
472 |
+
dtype='float16',
|
473 |
+
per_replica_batch_size=256,
|
474 |
+
gpu_thread_mode='gpu_private')
|
475 |
+
|
476 |
+
def benchmark_xla_1_gpu_fp16_dynamic(self):
|
477 |
+
"""Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
|
478 |
+
self._setup()
|
479 |
+
self._run_and_report_benchmark(
|
480 |
+
experiment_name='benchmark_xla_1_gpu_fp16_dynamic',
|
481 |
+
num_gpus=1,
|
482 |
+
enable_xla=True,
|
483 |
+
distribution_strategy='one_device',
|
484 |
+
dtype='float16',
|
485 |
+
per_replica_batch_size=256,
|
486 |
+
loss_scale='dynamic')
|
487 |
+
|
488 |
+
def benchmark_8_gpu(self):
|
489 |
+
"""Tests Keras model with 8 GPUs."""
|
490 |
+
self._setup()
|
491 |
+
self._run_and_report_benchmark(
|
492 |
+
experiment_name='benchmark_8_gpu',
|
493 |
+
num_gpus=8,
|
494 |
+
distribution_strategy='mirrored',
|
495 |
+
per_replica_batch_size=128)
|
496 |
+
|
497 |
+
def benchmark_8_gpu_tweaked(self):
|
498 |
+
"""Tests Keras model with manual config tuning and 8 GPUs."""
|
499 |
+
self._setup()
|
500 |
+
self._run_and_report_benchmark(
|
501 |
+
experiment_name='benchmark_8_gpu_tweaked',
|
502 |
+
num_gpus=8,
|
503 |
+
distribution_strategy='mirrored',
|
504 |
+
per_replica_batch_size=128,
|
505 |
+
dataset_num_private_threads=14)
|
506 |
+
|
507 |
+
def benchmark_xla_8_gpu(self):
|
508 |
+
"""Tests Keras model with XLA and 8 GPUs."""
|
509 |
+
self._setup()
|
510 |
+
self._run_and_report_benchmark(
|
511 |
+
experiment_name='benchmark_xla_8_gpu',
|
512 |
+
num_gpus=8,
|
513 |
+
enable_xla=True,
|
514 |
+
distribution_strategy='mirrored',
|
515 |
+
per_replica_batch_size=128)
|
516 |
+
|
517 |
+
def benchmark_xla_8_gpu_tweaked(self):
|
518 |
+
"""Tests Keras model with manual config tuning, 8 GPUs, and XLA."""
|
519 |
+
self._setup()
|
520 |
+
self._run_and_report_benchmark(
|
521 |
+
experiment_name='benchmark_xla_8_gpu_tweaked',
|
522 |
+
num_gpus=8,
|
523 |
+
enable_xla=True,
|
524 |
+
distribution_strategy='mirrored',
|
525 |
+
per_replica_batch_size=128,
|
526 |
+
gpu_thread_mode='gpu_private',
|
527 |
+
dataset_num_private_threads=24)
|
528 |
+
|
529 |
+
def benchmark_8_gpu_fp16(self):
|
530 |
+
"""Tests Keras model with 8 GPUs and fp16."""
|
531 |
+
self._setup()
|
532 |
+
self._run_and_report_benchmark(
|
533 |
+
experiment_name='benchmark_8_gpu_fp16',
|
534 |
+
num_gpus=8,
|
535 |
+
dtype='float16',
|
536 |
+
distribution_strategy='mirrored',
|
537 |
+
per_replica_batch_size=256)
|
538 |
+
|
539 |
+
def benchmark_8_gpu_fp16_tweaked(self):
|
540 |
+
"""Tests Keras model with 8 GPUs, fp16, and manual config tuning."""
|
541 |
+
self._setup()
|
542 |
+
self._run_and_report_benchmark(
|
543 |
+
experiment_name='benchmark_8_gpu_fp16_tweaked',
|
544 |
+
num_gpus=8,
|
545 |
+
dtype='float16',
|
546 |
+
distribution_strategy='mirrored',
|
547 |
+
per_replica_batch_size=256,
|
548 |
+
gpu_thread_mode='gpu_private',
|
549 |
+
dataset_num_private_threads=40)
|
550 |
+
|
551 |
+
def benchmark_8_gpu_fp16_dynamic_tweaked(self):
|
552 |
+
"""Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
|
553 |
+
self._setup()
|
554 |
+
self._run_and_report_benchmark(
|
555 |
+
experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked',
|
556 |
+
num_gpus=8,
|
557 |
+
dtype='float16',
|
558 |
+
distribution_strategy='mirrored',
|
559 |
+
per_replica_batch_size=256,
|
560 |
+
loss_scale='dynamic',
|
561 |
+
gpu_thread_mode='gpu_private',
|
562 |
+
dataset_num_private_threads=40)
|
563 |
+
|
564 |
+
def benchmark_xla_8_gpu_fp16(self):
|
565 |
+
"""Tests Keras model with XLA, 8 GPUs and fp16."""
|
566 |
+
self._setup()
|
567 |
+
self._run_and_report_benchmark(
|
568 |
+
experiment_name='benchmark_xla_8_gpu_fp16',
|
569 |
+
dtype='float16',
|
570 |
+
num_gpus=8,
|
571 |
+
enable_xla=True,
|
572 |
+
distribution_strategy='mirrored',
|
573 |
+
per_replica_batch_size=256)
|
574 |
+
|
575 |
+
def benchmark_xla_8_gpu_fp16_tweaked(self):
|
576 |
+
"""Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
|
577 |
+
self._setup()
|
578 |
+
self._run_and_report_benchmark(
|
579 |
+
experiment_name='benchmark_xla_8_gpu_fp16_tweaked',
|
580 |
+
dtype='float16',
|
581 |
+
num_gpus=8,
|
582 |
+
enable_xla=True,
|
583 |
+
distribution_strategy='mirrored',
|
584 |
+
per_replica_batch_size=256,
|
585 |
+
gpu_thread_mode='gpu_private',
|
586 |
+
dataset_num_private_threads=48)
|
587 |
+
|
588 |
+
def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
|
589 |
+
"""Tests with manual config tuning, XLA, 8 GPUs and fp16.
|
590 |
+
|
591 |
+
Delay performance measurement for stable performance on 96 vCPU platforms.
|
592 |
+
"""
|
593 |
+
self._setup()
|
594 |
+
self._run_and_report_benchmark(
|
595 |
+
experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure',
|
596 |
+
dtype='float16',
|
597 |
+
num_gpus=8,
|
598 |
+
enable_xla=True,
|
599 |
+
distribution_strategy='mirrored',
|
600 |
+
per_replica_batch_size=256,
|
601 |
+
gpu_thread_mode='gpu_private',
|
602 |
+
dataset_num_private_threads=48,
|
603 |
+
steps=310)
|
604 |
+
|
605 |
+
def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
|
606 |
+
"""Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
|
607 |
+
self._setup()
|
608 |
+
self._run_and_report_benchmark(
|
609 |
+
experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked',
|
610 |
+
dtype='float16',
|
611 |
+
num_gpus=8,
|
612 |
+
enable_xla=True,
|
613 |
+
distribution_strategy='mirrored',
|
614 |
+
per_replica_batch_size=256,
|
615 |
+
gpu_thread_mode='gpu_private',
|
616 |
+
loss_scale='dynamic',
|
617 |
+
dataset_num_private_threads=48)
|
618 |
+
|
619 |
+
def benchmark_2x2_tpu_bf16(self):
|
620 |
+
"""Test Keras model with 2x2 TPU, bf16."""
|
621 |
+
self._setup()
|
622 |
+
self._run_and_report_benchmark(
|
623 |
+
experiment_name='benchmark_2x2_tpu_bf16',
|
624 |
+
dtype='bfloat16',
|
625 |
+
num_tpus=8,
|
626 |
+
distribution_strategy='tpu',
|
627 |
+
per_replica_batch_size=128)
|
628 |
+
|
629 |
+
def benchmark_4x4_tpu_bf16(self):
|
630 |
+
"""Test Keras model with 4x4 TPU, bf16."""
|
631 |
+
self._setup()
|
632 |
+
self._run_and_report_benchmark(
|
633 |
+
experiment_name='benchmark_4x4_tpu_bf16',
|
634 |
+
dtype='bfloat16',
|
635 |
+
num_tpus=32,
|
636 |
+
distribution_strategy='tpu',
|
637 |
+
per_replica_batch_size=128)
|
638 |
+
|
639 |
+
def benchmark_8x8_tpu_bf16(self):
|
640 |
+
"""Test Keras model with 8x8 TPU, bf16."""
|
641 |
+
self._setup()
|
642 |
+
self._run_and_report_benchmark(
|
643 |
+
experiment_name='benchmark_8x8_tpu_bf16',
|
644 |
+
dtype='bfloat16',
|
645 |
+
num_tpus=128,
|
646 |
+
distribution_strategy='tpu',
|
647 |
+
per_replica_batch_size=64)
|
648 |
+
|
649 |
+
def fill_report_object(self, stats):
|
650 |
+
super(Resnet50KerasClassifierBenchmarkBase, self).fill_report_object(
|
651 |
+
stats,
|
652 |
+
total_batch_size=FLAGS.batch_size,
|
653 |
+
log_steps=FLAGS.log_steps)
|
654 |
+
|
655 |
+
|
656 |
+
class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
|
657 |
+
"""Resnet50 benchmarks."""
|
658 |
+
|
659 |
+
def __init__(self, output_dir=None, default_flags=None, tpu=None):
|
660 |
+
flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
|
661 |
+
|
662 |
+
super(Resnet50KerasBenchmarkBase, self).__init__(
|
663 |
+
output_dir=output_dir,
|
664 |
+
flag_methods=flag_methods,
|
665 |
+
default_flags=default_flags,
|
666 |
+
tpu=tpu)
|
667 |
+
|
668 |
+
@benchmark_wrappers.enable_runtime_flags
|
669 |
+
def _run_and_report_benchmark(self, skip_steps=None):
|
670 |
+
start_time_sec = time.time()
|
671 |
+
stats = resnet_imagenet_main.run(FLAGS)
|
672 |
+
wall_time_sec = time.time() - start_time_sec
|
673 |
+
# Number of logged step time entries that are excluded in performance
|
674 |
+
# report. We keep results from last 100 batches, or skip the steps based on
|
675 |
+
# input skip_steps.
|
676 |
+
warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps
|
677 |
+
|
678 |
+
super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
|
679 |
+
stats,
|
680 |
+
wall_time_sec,
|
681 |
+
total_batch_size=FLAGS.batch_size,
|
682 |
+
log_steps=FLAGS.log_steps,
|
683 |
+
warmup=warmup,
|
684 |
+
start_time_sec=start_time_sec)
|
685 |
+
|
686 |
+
def benchmark_1_gpu_no_dist_strat(self):
|
687 |
+
"""Test Keras model with 1 GPU, no distribution strategy."""
|
688 |
+
self._setup()
|
689 |
+
|
690 |
+
FLAGS.num_gpus = 1
|
691 |
+
FLAGS.enable_eager = True
|
692 |
+
FLAGS.distribution_strategy = 'off'
|
693 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
|
694 |
+
FLAGS.batch_size = 128
|
695 |
+
self._run_and_report_benchmark()
|
696 |
+
|
697 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
|
698 |
+
"""Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
|
699 |
+
self._setup()
|
700 |
+
|
701 |
+
FLAGS.num_gpus = 1
|
702 |
+
FLAGS.enable_eager = True
|
703 |
+
FLAGS.run_eagerly = True
|
704 |
+
FLAGS.distribution_strategy = 'off'
|
705 |
+
FLAGS.model_dir = self._get_model_dir(
|
706 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly')
|
707 |
+
FLAGS.batch_size = 64
|
708 |
+
self._run_and_report_benchmark()
|
709 |
+
|
710 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
|
711 |
+
"""Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
|
712 |
+
self._setup()
|
713 |
+
|
714 |
+
FLAGS.num_gpus = 1
|
715 |
+
FLAGS.enable_eager = True
|
716 |
+
FLAGS.run_eagerly = True
|
717 |
+
FLAGS.explicit_gpu_placement = True
|
718 |
+
FLAGS.distribution_strategy = 'off'
|
719 |
+
FLAGS.model_dir = self._get_model_dir(
|
720 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
|
721 |
+
FLAGS.batch_size = 64
|
722 |
+
self._run_and_report_benchmark()
|
723 |
+
|
724 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
|
725 |
+
"""Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
|
726 |
+
self._setup()
|
727 |
+
|
728 |
+
FLAGS.num_gpus = 1
|
729 |
+
FLAGS.enable_eager = True
|
730 |
+
FLAGS.run_eagerly = True
|
731 |
+
FLAGS.distribution_strategy = 'off'
|
732 |
+
FLAGS.model_dir = self._get_model_dir(
|
733 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
|
734 |
+
FLAGS.dtype = 'fp16'
|
735 |
+
FLAGS.batch_size = 128
|
736 |
+
self._run_and_report_benchmark()
|
737 |
+
|
738 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
|
739 |
+
"""Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
|
740 |
+
self._setup()
|
741 |
+
|
742 |
+
FLAGS.num_gpus = 1
|
743 |
+
FLAGS.enable_eager = True
|
744 |
+
FLAGS.run_eagerly = True
|
745 |
+
FLAGS.explicit_gpu_placement = True
|
746 |
+
FLAGS.distribution_strategy = 'off'
|
747 |
+
FLAGS.model_dir = self._get_model_dir(
|
748 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
|
749 |
+
FLAGS.dtype = 'fp16'
|
750 |
+
FLAGS.batch_size = 128
|
751 |
+
self._run_and_report_benchmark()
|
752 |
+
|
753 |
+
def benchmark_1_gpu(self):
|
754 |
+
"""Test Keras model with 1 GPU."""
|
755 |
+
self._setup()
|
756 |
+
|
757 |
+
FLAGS.num_gpus = 1
|
758 |
+
FLAGS.enable_eager = True
|
759 |
+
FLAGS.distribution_strategy = 'one_device'
|
760 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
|
761 |
+
FLAGS.batch_size = 128
|
762 |
+
self._run_and_report_benchmark()
|
763 |
+
|
764 |
+
def benchmark_1_gpu_amp(self):
|
765 |
+
"""Test Keras model with 1 GPU with automatic mixed precision."""
|
766 |
+
self._setup()
|
767 |
+
|
768 |
+
FLAGS.num_gpus = 1
|
769 |
+
FLAGS.enable_eager = True
|
770 |
+
FLAGS.dtype = 'fp16'
|
771 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
772 |
+
FLAGS.distribution_strategy = 'one_device'
|
773 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
|
774 |
+
FLAGS.batch_size = 256
|
775 |
+
self._run_and_report_benchmark()
|
776 |
+
|
777 |
+
def benchmark_xla_1_gpu(self):
|
778 |
+
"""Test Keras model with XLA and 1 GPU."""
|
779 |
+
self._setup()
|
780 |
+
|
781 |
+
FLAGS.num_gpus = 1
|
782 |
+
FLAGS.enable_eager = True
|
783 |
+
FLAGS.enable_xla = True
|
784 |
+
FLAGS.distribution_strategy = 'one_device'
|
785 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
|
786 |
+
FLAGS.batch_size = 128
|
787 |
+
self._run_and_report_benchmark()
|
788 |
+
|
789 |
+
def benchmark_xla_1_gpu_amp(self):
|
790 |
+
"""Test Keras model with XLA and 1 GPU with automatic mixed precision."""
|
791 |
+
self._setup()
|
792 |
+
|
793 |
+
FLAGS.num_gpus = 1
|
794 |
+
FLAGS.enable_eager = True
|
795 |
+
FLAGS.dtype = 'fp16'
|
796 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
797 |
+
FLAGS.enable_xla = True
|
798 |
+
FLAGS.distribution_strategy = 'one_device'
|
799 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
|
800 |
+
FLAGS.batch_size = 256
|
801 |
+
self._run_and_report_benchmark()
|
802 |
+
|
803 |
+
def benchmark_1_gpu_fp16(self):
|
804 |
+
"""Test Keras model with 1 GPU and fp16."""
|
805 |
+
self._setup()
|
806 |
+
|
807 |
+
FLAGS.num_gpus = 1
|
808 |
+
FLAGS.enable_eager = True
|
809 |
+
FLAGS.distribution_strategy = 'one_device'
|
810 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
|
811 |
+
FLAGS.dtype = 'fp16'
|
812 |
+
FLAGS.batch_size = 256
|
813 |
+
self._run_and_report_benchmark()
|
814 |
+
|
815 |
+
def benchmark_1_gpu_fp16_dynamic(self):
|
816 |
+
"""Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
|
817 |
+
self._setup()
|
818 |
+
|
819 |
+
FLAGS.num_gpus = 1
|
820 |
+
FLAGS.enable_eager = True
|
821 |
+
FLAGS.distribution_strategy = 'one_device'
|
822 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
|
823 |
+
FLAGS.dtype = 'fp16'
|
824 |
+
FLAGS.batch_size = 256
|
825 |
+
FLAGS.loss_scale = 'dynamic'
|
826 |
+
self._run_and_report_benchmark()
|
827 |
+
|
828 |
+
def benchmark_xla_1_gpu_fp16(self):
|
829 |
+
"""Test Keras model with XLA, 1 GPU and fp16."""
|
830 |
+
self._setup()
|
831 |
+
|
832 |
+
FLAGS.num_gpus = 1
|
833 |
+
FLAGS.enable_eager = True
|
834 |
+
FLAGS.enable_xla = True
|
835 |
+
FLAGS.distribution_strategy = 'one_device'
|
836 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
|
837 |
+
FLAGS.dtype = 'fp16'
|
838 |
+
FLAGS.batch_size = 256
|
839 |
+
self._run_and_report_benchmark()
|
840 |
+
|
841 |
+
def benchmark_xla_1_gpu_fp16_tweaked(self):
|
842 |
+
"""Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
|
843 |
+
self._setup()
|
844 |
+
|
845 |
+
FLAGS.num_gpus = 1
|
846 |
+
FLAGS.enable_eager = True
|
847 |
+
FLAGS.enable_xla = True
|
848 |
+
FLAGS.distribution_strategy = 'one_device'
|
849 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
|
850 |
+
FLAGS.dtype = 'fp16'
|
851 |
+
FLAGS.batch_size = 256
|
852 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
853 |
+
self._run_and_report_benchmark()
|
854 |
+
|
855 |
+
def benchmark_xla_1_gpu_fp16_dynamic(self):
|
856 |
+
"""Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
|
857 |
+
self._setup()
|
858 |
+
|
859 |
+
FLAGS.num_gpus = 1
|
860 |
+
FLAGS.enable_eager = True
|
861 |
+
FLAGS.enable_xla = True
|
862 |
+
FLAGS.distribution_strategy = 'one_device'
|
863 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
|
864 |
+
FLAGS.dtype = 'fp16'
|
865 |
+
FLAGS.batch_size = 256
|
866 |
+
FLAGS.loss_scale = 'dynamic'
|
867 |
+
self._run_and_report_benchmark()
|
868 |
+
|
869 |
+
def benchmark_8_gpu(self):
|
870 |
+
"""Test Keras model with 8 GPUs."""
|
871 |
+
self._setup()
|
872 |
+
|
873 |
+
FLAGS.num_gpus = 8
|
874 |
+
FLAGS.enable_eager = True
|
875 |
+
FLAGS.distribution_strategy = 'mirrored'
|
876 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
|
877 |
+
FLAGS.batch_size = 128 * 8 # 8 GPUs
|
878 |
+
self._run_and_report_benchmark()
|
879 |
+
|
880 |
+
def benchmark_8_gpu_amp(self):
|
881 |
+
"""Test Keras model with 8 GPUs with automatic mixed precision."""
|
882 |
+
self._setup()
|
883 |
+
|
884 |
+
FLAGS.num_gpus = 8
|
885 |
+
FLAGS.enable_eager = True
|
886 |
+
FLAGS.dtype = 'fp16'
|
887 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
888 |
+
FLAGS.distribution_strategy = 'mirrored'
|
889 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
|
890 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
891 |
+
self._run_and_report_benchmark()
|
892 |
+
|
893 |
+
def benchmark_8_gpu_tweaked(self):
|
894 |
+
"""Test Keras model with manual config tuning and 8 GPUs."""
|
895 |
+
self._setup()
|
896 |
+
|
897 |
+
FLAGS.num_gpus = 8
|
898 |
+
FLAGS.enable_eager = True
|
899 |
+
FLAGS.distribution_strategy = 'mirrored'
|
900 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
|
901 |
+
FLAGS.batch_size = 128 * 8 # 8 GPUs
|
902 |
+
FLAGS.datasets_num_private_threads = 14
|
903 |
+
self._run_and_report_benchmark()
|
904 |
+
|
905 |
+
def benchmark_xla_8_gpu(self):
|
906 |
+
"""Test Keras model with XLA and 8 GPUs."""
|
907 |
+
self._setup()
|
908 |
+
|
909 |
+
FLAGS.num_gpus = 8
|
910 |
+
FLAGS.enable_eager = True
|
911 |
+
FLAGS.enable_xla = True
|
912 |
+
FLAGS.distribution_strategy = 'mirrored'
|
913 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
|
914 |
+
FLAGS.batch_size = 128 * 8 # 8 GPUs
|
915 |
+
self._run_and_report_benchmark()
|
916 |
+
|
917 |
+
def benchmark_xla_8_gpu_amp(self):
|
918 |
+
"""Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
|
919 |
+
self._setup()
|
920 |
+
|
921 |
+
FLAGS.num_gpus = 8
|
922 |
+
FLAGS.enable_eager = True
|
923 |
+
FLAGS.dtype = 'fp16'
|
924 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
925 |
+
FLAGS.enable_xla = True
|
926 |
+
FLAGS.distribution_strategy = 'mirrored'
|
927 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
|
928 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
929 |
+
self._run_and_report_benchmark()
|
930 |
+
|
931 |
+
def benchmark_xla_8_gpu_tweaked(self):
|
932 |
+
"""Test Keras model with manual config tuning, 8 GPUs, and XLA."""
|
933 |
+
self._setup()
|
934 |
+
|
935 |
+
FLAGS.num_gpus = 8
|
936 |
+
FLAGS.enable_eager = True
|
937 |
+
FLAGS.enable_xla = True
|
938 |
+
FLAGS.distribution_strategy = 'mirrored'
|
939 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
|
940 |
+
FLAGS.batch_size = 128 * 8
|
941 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
942 |
+
FLAGS.datasets_num_private_threads = 24
|
943 |
+
self._run_and_report_benchmark()
|
944 |
+
|
945 |
+
def benchmark_8_gpu_fp16(self):
|
946 |
+
"""Test Keras model with 8 GPUs and fp16."""
|
947 |
+
self._setup()
|
948 |
+
|
949 |
+
FLAGS.num_gpus = 8
|
950 |
+
FLAGS.dtype = 'fp16'
|
951 |
+
FLAGS.enable_eager = True
|
952 |
+
FLAGS.distribution_strategy = 'mirrored'
|
953 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
|
954 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
955 |
+
self._run_and_report_benchmark()
|
956 |
+
|
957 |
+
def benchmark_8_gpu_fp16_tweaked(self):
|
958 |
+
"""Test Keras model with 8 GPUs, fp16, and manual config tuning."""
|
959 |
+
self._setup()
|
960 |
+
|
961 |
+
FLAGS.num_gpus = 8
|
962 |
+
FLAGS.dtype = 'fp16'
|
963 |
+
FLAGS.enable_eager = True
|
964 |
+
FLAGS.distribution_strategy = 'mirrored'
|
965 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
|
966 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
967 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
968 |
+
FLAGS.dataset_num_private_threads = 40
|
969 |
+
self._run_and_report_benchmark()
|
970 |
+
|
971 |
+
def benchmark_8_gpu_fp16_dynamic_tweaked(self):
|
972 |
+
"""Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
|
973 |
+
self._setup()
|
974 |
+
|
975 |
+
FLAGS.num_gpus = 8
|
976 |
+
FLAGS.dtype = 'fp16'
|
977 |
+
FLAGS.enable_eager = True
|
978 |
+
FLAGS.distribution_strategy = 'mirrored'
|
979 |
+
FLAGS.model_dir = self._get_model_dir(
|
980 |
+
'benchmark_8_gpu_fp16_dynamic_tweaked')
|
981 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
982 |
+
FLAGS.loss_scale = 'dynamic'
|
983 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
984 |
+
FLAGS.dataset_num_private_threads = 40
|
985 |
+
self._run_and_report_benchmark()
|
986 |
+
|
987 |
+
def benchmark_xla_8_gpu_fp16(self):
|
988 |
+
"""Test Keras model with XLA, 8 GPUs and fp16."""
|
989 |
+
self._setup()
|
990 |
+
|
991 |
+
FLAGS.num_gpus = 8
|
992 |
+
FLAGS.dtype = 'fp16'
|
993 |
+
FLAGS.enable_eager = True
|
994 |
+
FLAGS.enable_xla = True
|
995 |
+
FLAGS.distribution_strategy = 'mirrored'
|
996 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
|
997 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
998 |
+
self._run_and_report_benchmark()
|
999 |
+
|
1000 |
+
def benchmark_xla_8_gpu_fp16_tweaked(self):
|
1001 |
+
"""Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
|
1002 |
+
self._setup()
|
1003 |
+
|
1004 |
+
FLAGS.num_gpus = 8
|
1005 |
+
FLAGS.dtype = 'fp16'
|
1006 |
+
FLAGS.enable_eager = True
|
1007 |
+
FLAGS.enable_xla = True
|
1008 |
+
FLAGS.distribution_strategy = 'mirrored'
|
1009 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
|
1010 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
1011 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
1012 |
+
FLAGS.datasets_num_private_threads = 48
|
1013 |
+
self._run_and_report_benchmark()
|
1014 |
+
|
1015 |
+
def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
|
1016 |
+
"""Test with manual config tuning, XLA, 8 GPUs and fp16.
|
1017 |
+
|
1018 |
+
Delay performance measurement for stable performance on 96 vCPU platforms.
|
1019 |
+
"""
|
1020 |
+
self._setup()
|
1021 |
+
|
1022 |
+
FLAGS.num_gpus = 8
|
1023 |
+
FLAGS.dtype = 'fp16'
|
1024 |
+
FLAGS.enable_eager = True
|
1025 |
+
FLAGS.enable_xla = True
|
1026 |
+
FLAGS.distribution_strategy = 'mirrored'
|
1027 |
+
FLAGS.model_dir = self._get_model_dir(
|
1028 |
+
'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
|
1029 |
+
FLAGS.batch_size = 256 * 8
|
1030 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
1031 |
+
FLAGS.datasets_num_private_threads = 48
|
1032 |
+
FLAGS.train_steps = 310
|
1033 |
+
self._run_and_report_benchmark()
|
1034 |
+
|
1035 |
+
def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
|
1036 |
+
"""Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
|
1037 |
+
self._setup()
|
1038 |
+
|
1039 |
+
FLAGS.num_gpus = 8
|
1040 |
+
FLAGS.dtype = 'fp16'
|
1041 |
+
FLAGS.enable_eager = True
|
1042 |
+
FLAGS.enable_xla = True
|
1043 |
+
FLAGS.distribution_strategy = 'mirrored'
|
1044 |
+
FLAGS.model_dir = self._get_model_dir(
|
1045 |
+
'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
|
1046 |
+
FLAGS.batch_size = 256 * 8 # 8 GPUs
|
1047 |
+
FLAGS.loss_scale = 'dynamic'
|
1048 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
1049 |
+
FLAGS.datasets_num_private_threads = 48
|
1050 |
+
self._run_and_report_benchmark()
|
1051 |
+
|
1052 |
+
def benchmark_2x2_tpu_bf16(self):
|
1053 |
+
"""Test Keras model with 2x2 TPU, bf16."""
|
1054 |
+
self._setup()
|
1055 |
+
|
1056 |
+
FLAGS.dtype = 'bf16'
|
1057 |
+
FLAGS.distribution_strategy = 'tpu'
|
1058 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16')
|
1059 |
+
FLAGS.batch_size = 1024
|
1060 |
+
self._run_and_report_benchmark()
|
1061 |
+
|
1062 |
+
def benchmark_4x4_tpu_bf16(self):
|
1063 |
+
"""Test Keras model with 4x4 TPU, bf16."""
|
1064 |
+
self._setup()
|
1065 |
+
|
1066 |
+
FLAGS.dtype = 'bf16'
|
1067 |
+
FLAGS.distribution_strategy = 'tpu'
|
1068 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16')
|
1069 |
+
FLAGS.batch_size = 4096
|
1070 |
+
self._run_and_report_benchmark()
|
1071 |
+
|
1072 |
+
def benchmark_8x8_tpu_bf16(self):
|
1073 |
+
"""Test Keras model with 8x8 TPU, bf16."""
|
1074 |
+
self._setup()
|
1075 |
+
|
1076 |
+
FLAGS.dtype = 'bf16'
|
1077 |
+
FLAGS.distribution_strategy = 'tpu'
|
1078 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16')
|
1079 |
+
FLAGS.batch_size = 8192
|
1080 |
+
self._run_and_report_benchmark()
|
1081 |
+
|
1082 |
+
def fill_report_object(self, stats):
|
1083 |
+
super(Resnet50KerasBenchmarkBase, self).fill_report_object(
|
1084 |
+
stats,
|
1085 |
+
total_batch_size=FLAGS.batch_size,
|
1086 |
+
log_steps=FLAGS.log_steps)
|
1087 |
+
|
1088 |
+
|
1089 |
+
class Resnet50KerasBenchmarkSynth(Resnet50KerasClassifierBenchmarkBase):
|
1090 |
+
"""Resnet50 synthetic benchmark tests."""
|
1091 |
+
|
1092 |
+
def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
|
1093 |
+
def_flags = {}
|
1094 |
+
def_flags['log_steps'] = 10
|
1095 |
+
|
1096 |
+
super(Resnet50KerasBenchmarkSynth, self).__init__(
|
1097 |
+
output_dir=output_dir, default_flags=def_flags, tpu=tpu,
|
1098 |
+
dataset_builder='synthetic', train_epochs=1, train_steps=110)
|
1099 |
+
|
1100 |
+
|
1101 |
+
class Resnet50KerasBenchmarkReal(Resnet50KerasClassifierBenchmarkBase):
|
1102 |
+
"""Resnet50 real data benchmark tests."""
|
1103 |
+
|
1104 |
+
def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
|
1105 |
+
data_dir = os.path.join(root_data_dir, 'imagenet')
|
1106 |
+
def_flags = {}
|
1107 |
+
def_flags['log_steps'] = 10
|
1108 |
+
|
1109 |
+
super(Resnet50KerasBenchmarkReal, self).__init__(
|
1110 |
+
output_dir=output_dir, default_flags=def_flags, tpu=tpu,
|
1111 |
+
dataset_builder='records', train_epochs=1, train_steps=110,
|
1112 |
+
data_dir=data_dir)
|
1113 |
+
|
1114 |
+
|
1115 |
+
class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase):
|
1116 |
+
"""Resnet50 real data (stored in remote storage) benchmark tests."""
|
1117 |
+
|
1118 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
1119 |
+
def_flags = {}
|
1120 |
+
def_flags['skip_eval'] = True
|
1121 |
+
def_flags['report_accuracy_metrics'] = False
|
1122 |
+
def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
|
1123 |
+
# Defining multiple epochs overrides the train_steps setting in benchmarks.
|
1124 |
+
def_flags['train_epochs'] = 2
|
1125 |
+
# Cache dataset so performance is stable after the first epoch.
|
1126 |
+
def_flags['training_dataset_cache'] = True
|
1127 |
+
def_flags['log_steps'] = 100
|
1128 |
+
# Note that for single GPU and pure eager tests which are less likely to be
|
1129 |
+
# input bound and more stable, these tests will run for shorter time by
|
1130 |
+
# overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark
|
1131 |
+
# methods, and skip_steps in _run_and_report_benchmark().
|
1132 |
+
|
1133 |
+
super(Resnet50KerasBenchmarkRemoteData, self).__init__(
|
1134 |
+
output_dir=output_dir, default_flags=def_flags)
|
1135 |
+
|
1136 |
+
def _override_flags_to_run_test_shorter(self):
|
1137 |
+
FLAGS.train_epochs = 1
|
1138 |
+
FLAGS.train_steps = 300
|
1139 |
+
FLAGS.log_steps = 10
|
1140 |
+
|
1141 |
+
def benchmark_1_gpu_no_dist_strat(self):
|
1142 |
+
"""Test Keras model with 1 GPU, no distribution strategy."""
|
1143 |
+
self._setup()
|
1144 |
+
|
1145 |
+
FLAGS.num_gpus = 1
|
1146 |
+
FLAGS.enable_eager = True
|
1147 |
+
FLAGS.distribution_strategy = 'off'
|
1148 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
|
1149 |
+
FLAGS.batch_size = 128
|
1150 |
+
self._override_flags_to_run_test_shorter()
|
1151 |
+
self._run_and_report_benchmark()
|
1152 |
+
|
1153 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
|
1154 |
+
"""Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
|
1155 |
+
self._setup()
|
1156 |
+
|
1157 |
+
FLAGS.num_gpus = 1
|
1158 |
+
FLAGS.enable_eager = True
|
1159 |
+
FLAGS.run_eagerly = True
|
1160 |
+
FLAGS.distribution_strategy = 'off'
|
1161 |
+
FLAGS.model_dir = self._get_model_dir(
|
1162 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly')
|
1163 |
+
FLAGS.batch_size = 64
|
1164 |
+
self._override_flags_to_run_test_shorter()
|
1165 |
+
self._run_and_report_benchmark()
|
1166 |
+
|
1167 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
|
1168 |
+
"""Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
|
1169 |
+
self._setup()
|
1170 |
+
|
1171 |
+
FLAGS.num_gpus = 1
|
1172 |
+
FLAGS.enable_eager = True
|
1173 |
+
FLAGS.run_eagerly = True
|
1174 |
+
FLAGS.explicit_gpu_placement = True
|
1175 |
+
FLAGS.distribution_strategy = 'off'
|
1176 |
+
FLAGS.model_dir = self._get_model_dir(
|
1177 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
|
1178 |
+
FLAGS.batch_size = 64
|
1179 |
+
self._override_flags_to_run_test_shorter()
|
1180 |
+
self._run_and_report_benchmark()
|
1181 |
+
|
1182 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
|
1183 |
+
"""Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
|
1184 |
+
self._setup()
|
1185 |
+
|
1186 |
+
FLAGS.num_gpus = 1
|
1187 |
+
FLAGS.enable_eager = True
|
1188 |
+
FLAGS.run_eagerly = True
|
1189 |
+
FLAGS.distribution_strategy = 'off'
|
1190 |
+
FLAGS.model_dir = self._get_model_dir(
|
1191 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
|
1192 |
+
FLAGS.dtype = 'fp16'
|
1193 |
+
FLAGS.batch_size = 128
|
1194 |
+
self._override_flags_to_run_test_shorter()
|
1195 |
+
self._run_and_report_benchmark()
|
1196 |
+
|
1197 |
+
def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
|
1198 |
+
"""Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
|
1199 |
+
self._setup()
|
1200 |
+
|
1201 |
+
FLAGS.num_gpus = 1
|
1202 |
+
FLAGS.enable_eager = True
|
1203 |
+
FLAGS.run_eagerly = True
|
1204 |
+
FLAGS.explicit_gpu_placement = True
|
1205 |
+
FLAGS.distribution_strategy = 'off'
|
1206 |
+
FLAGS.model_dir = self._get_model_dir(
|
1207 |
+
'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
|
1208 |
+
FLAGS.dtype = 'fp16'
|
1209 |
+
FLAGS.batch_size = 128
|
1210 |
+
self._override_flags_to_run_test_shorter()
|
1211 |
+
self._run_and_report_benchmark()
|
1212 |
+
|
1213 |
+
def benchmark_1_gpu(self):
|
1214 |
+
"""Test Keras model with 1 GPU."""
|
1215 |
+
self._setup()
|
1216 |
+
|
1217 |
+
FLAGS.num_gpus = 1
|
1218 |
+
FLAGS.enable_eager = True
|
1219 |
+
FLAGS.distribution_strategy = 'one_device'
|
1220 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
|
1221 |
+
FLAGS.batch_size = 128
|
1222 |
+
self._override_flags_to_run_test_shorter()
|
1223 |
+
self._run_and_report_benchmark()
|
1224 |
+
|
1225 |
+
def benchmark_1_gpu_amp(self):
|
1226 |
+
"""Test Keras model with 1 GPU with automatic mixed precision."""
|
1227 |
+
self._setup()
|
1228 |
+
|
1229 |
+
FLAGS.num_gpus = 1
|
1230 |
+
FLAGS.enable_eager = True
|
1231 |
+
FLAGS.dtype = 'fp16'
|
1232 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
1233 |
+
FLAGS.distribution_strategy = 'one_device'
|
1234 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
|
1235 |
+
FLAGS.batch_size = 256
|
1236 |
+
self._override_flags_to_run_test_shorter()
|
1237 |
+
self._run_and_report_benchmark()
|
1238 |
+
|
1239 |
+
def benchmark_xla_1_gpu(self):
|
1240 |
+
"""Test Keras model with XLA and 1 GPU."""
|
1241 |
+
self._setup()
|
1242 |
+
|
1243 |
+
FLAGS.num_gpus = 1
|
1244 |
+
FLAGS.enable_eager = True
|
1245 |
+
FLAGS.enable_xla = True
|
1246 |
+
FLAGS.distribution_strategy = 'one_device'
|
1247 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
|
1248 |
+
FLAGS.batch_size = 128
|
1249 |
+
self._override_flags_to_run_test_shorter()
|
1250 |
+
self._run_and_report_benchmark()
|
1251 |
+
|
1252 |
+
def benchmark_xla_1_gpu_amp(self):
|
1253 |
+
"""Test Keras model with XLA and 1 GPU with automatic mixed precision."""
|
1254 |
+
self._setup()
|
1255 |
+
|
1256 |
+
FLAGS.num_gpus = 1
|
1257 |
+
FLAGS.enable_eager = True
|
1258 |
+
FLAGS.dtype = 'fp16'
|
1259 |
+
FLAGS.fp16_implementation = 'graph_rewrite'
|
1260 |
+
FLAGS.enable_xla = True
|
1261 |
+
FLAGS.distribution_strategy = 'one_device'
|
1262 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
|
1263 |
+
FLAGS.batch_size = 256
|
1264 |
+
self._override_flags_to_run_test_shorter()
|
1265 |
+
self._run_and_report_benchmark()
|
1266 |
+
|
1267 |
+
def benchmark_1_gpu_fp16(self):
|
1268 |
+
"""Test Keras model with 1 GPU and fp16."""
|
1269 |
+
self._setup()
|
1270 |
+
|
1271 |
+
FLAGS.num_gpus = 1
|
1272 |
+
FLAGS.enable_eager = True
|
1273 |
+
FLAGS.distribution_strategy = 'one_device'
|
1274 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
|
1275 |
+
FLAGS.dtype = 'fp16'
|
1276 |
+
FLAGS.batch_size = 256
|
1277 |
+
self._override_flags_to_run_test_shorter()
|
1278 |
+
self._run_and_report_benchmark()
|
1279 |
+
|
1280 |
+
def benchmark_1_gpu_fp16_dynamic(self):
|
1281 |
+
"""Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
|
1282 |
+
self._setup()
|
1283 |
+
|
1284 |
+
FLAGS.num_gpus = 1
|
1285 |
+
FLAGS.enable_eager = True
|
1286 |
+
FLAGS.distribution_strategy = 'one_device'
|
1287 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
|
1288 |
+
FLAGS.dtype = 'fp16'
|
1289 |
+
FLAGS.batch_size = 256
|
1290 |
+
FLAGS.loss_scale = 'dynamic'
|
1291 |
+
self._override_flags_to_run_test_shorter()
|
1292 |
+
self._run_and_report_benchmark()
|
1293 |
+
|
1294 |
+
def benchmark_xla_1_gpu_fp16(self):
|
1295 |
+
"""Test Keras model with XLA, 1 GPU and fp16."""
|
1296 |
+
self._setup()
|
1297 |
+
|
1298 |
+
FLAGS.num_gpus = 1
|
1299 |
+
FLAGS.enable_eager = True
|
1300 |
+
FLAGS.enable_xla = True
|
1301 |
+
FLAGS.distribution_strategy = 'one_device'
|
1302 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
|
1303 |
+
FLAGS.dtype = 'fp16'
|
1304 |
+
FLAGS.batch_size = 256
|
1305 |
+
self._override_flags_to_run_test_shorter()
|
1306 |
+
self._run_and_report_benchmark()
|
1307 |
+
|
1308 |
+
def benchmark_xla_1_gpu_fp16_tweaked(self):
|
1309 |
+
"""Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
|
1310 |
+
self._setup()
|
1311 |
+
|
1312 |
+
FLAGS.num_gpus = 1
|
1313 |
+
FLAGS.enable_eager = True
|
1314 |
+
FLAGS.enable_xla = True
|
1315 |
+
FLAGS.distribution_strategy = 'one_device'
|
1316 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
|
1317 |
+
FLAGS.dtype = 'fp16'
|
1318 |
+
FLAGS.batch_size = 256
|
1319 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
1320 |
+
self._override_flags_to_run_test_shorter()
|
1321 |
+
self._run_and_report_benchmark()
|
1322 |
+
|
1323 |
+
def benchmark_xla_1_gpu_fp16_dynamic(self):
|
1324 |
+
"""Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
|
1325 |
+
self._setup()
|
1326 |
+
|
1327 |
+
FLAGS.num_gpus = 1
|
1328 |
+
FLAGS.enable_eager = True
|
1329 |
+
FLAGS.enable_xla = True
|
1330 |
+
FLAGS.distribution_strategy = 'one_device'
|
1331 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
|
1332 |
+
FLAGS.dtype = 'fp16'
|
1333 |
+
FLAGS.batch_size = 256
|
1334 |
+
FLAGS.loss_scale = 'dynamic'
|
1335 |
+
self._override_flags_to_run_test_shorter()
|
1336 |
+
self._run_and_report_benchmark()
|
1337 |
+
|
1338 |
+
@benchmark_wrappers.enable_runtime_flags
|
1339 |
+
def _run_and_report_benchmark(self):
|
1340 |
+
if FLAGS.num_gpus == 1 or FLAGS.run_eagerly:
|
1341 |
+
# For single GPU and pure eager tests which are less likely to be input
|
1342 |
+
# bound and more stable, run for shorter time and use the default
|
1343 |
+
# skip_steps.
|
1344 |
+
skip_steps = None
|
1345 |
+
else:
|
1346 |
+
# skip the first epoch for performance measurement.
|
1347 |
+
skip_steps = 600
|
1348 |
+
super(Resnet50KerasBenchmarkRemoteData,
|
1349 |
+
self)._run_and_report_benchmark(skip_steps=skip_steps)
|
1350 |
+
|
1351 |
+
|
1352 |
+
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
|
1353 |
+
"""Trivial model with real data benchmark tests."""
|
1354 |
+
|
1355 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
1356 |
+
flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
|
1357 |
+
|
1358 |
+
def_flags = {}
|
1359 |
+
def_flags['use_trivial_model'] = True
|
1360 |
+
def_flags['skip_eval'] = True
|
1361 |
+
def_flags['report_accuracy_metrics'] = False
|
1362 |
+
def_flags['dtype'] = 'fp16'
|
1363 |
+
def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
|
1364 |
+
def_flags['train_steps'] = 600
|
1365 |
+
def_flags['log_steps'] = 100
|
1366 |
+
def_flags['distribution_strategy'] = 'mirrored'
|
1367 |
+
|
1368 |
+
super(TrivialKerasBenchmarkReal, self).__init__(
|
1369 |
+
output_dir=output_dir,
|
1370 |
+
flag_methods=flag_methods,
|
1371 |
+
default_flags=def_flags)
|
1372 |
+
|
1373 |
+
@benchmark_wrappers.enable_runtime_flags
|
1374 |
+
def _run_and_report_benchmark(self):
|
1375 |
+
start_time_sec = time.time()
|
1376 |
+
stats = resnet_imagenet_main.run(FLAGS)
|
1377 |
+
wall_time_sec = time.time() - start_time_sec
|
1378 |
+
|
1379 |
+
super(TrivialKerasBenchmarkReal, self)._report_benchmark(
|
1380 |
+
stats,
|
1381 |
+
wall_time_sec,
|
1382 |
+
total_batch_size=FLAGS.batch_size,
|
1383 |
+
log_steps=FLAGS.log_steps)
|
1384 |
+
|
1385 |
+
def benchmark_8_gpu_warmup(self):
|
1386 |
+
"""Dummy test that runs over an epoch to warmup the machine."""
|
1387 |
+
self._setup()
|
1388 |
+
|
1389 |
+
FLAGS.num_gpus = 8
|
1390 |
+
FLAGS.enable_eager = True
|
1391 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
|
1392 |
+
FLAGS.batch_size = 256 * 8
|
1393 |
+
FLAGS.train_steps = 700
|
1394 |
+
self._run_and_report_benchmark()
|
1395 |
+
|
1396 |
+
def fill_report_object(self, stats):
|
1397 |
+
super(TrivialKerasBenchmarkReal, self).fill_report_object(
|
1398 |
+
stats,
|
1399 |
+
total_batch_size=FLAGS.batch_size,
|
1400 |
+
log_steps=FLAGS.log_steps)
|
1401 |
+
|
1402 |
+
|
1403 |
+
class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark):
|
1404 |
+
"""Resnet50 distributed accuracy tests with multiple workers."""
|
1405 |
+
|
1406 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
1407 |
+
flag_methods = [classifier_trainer.define_imagenet_keras_flags]
|
1408 |
+
self.data_dir = os.path.join(root_data_dir, 'imagenet')
|
1409 |
+
super(Resnet50MultiWorkerKerasAccuracy, self).__init__(
|
1410 |
+
output_dir=output_dir, flag_methods=flag_methods)
|
1411 |
+
|
1412 |
+
def _benchmark_common(self, eager, num_workers, all_reduce_alg):
|
1413 |
+
"""Common to all benchmarks in this class."""
|
1414 |
+
self._setup()
|
1415 |
+
|
1416 |
+
num_gpus = 8
|
1417 |
+
FLAGS.num_gpus = num_gpus
|
1418 |
+
FLAGS.data_dir = self.data_dir
|
1419 |
+
FLAGS.train_epochs = 90
|
1420 |
+
FLAGS.epochs_between_evals = 10
|
1421 |
+
FLAGS.dtype = 'fp16'
|
1422 |
+
FLAGS.enable_eager = eager
|
1423 |
+
FLAGS.enable_xla = False
|
1424 |
+
FLAGS.distribution_strategy = 'multi_worker_mirrored'
|
1425 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
1426 |
+
FLAGS.datasets_num_private_threads = 32
|
1427 |
+
FLAGS.model_dir = self._get_model_dir(
|
1428 |
+
'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
|
1429 |
+
'eager' if eager else 'graph', num_workers, all_reduce_alg))
|
1430 |
+
FLAGS.batch_size = 256 * num_gpus * num_workers
|
1431 |
+
FLAGS.all_reduce_alg = all_reduce_alg
|
1432 |
+
|
1433 |
+
self._run_and_report_benchmark()
|
1434 |
+
|
1435 |
+
@benchmark_wrappers.enable_runtime_flags
|
1436 |
+
def _run_and_report_benchmark(self,
|
1437 |
+
top_1_min=MIN_TOP_1_ACCURACY,
|
1438 |
+
top_1_max=MAX_TOP_1_ACCURACY):
|
1439 |
+
start_time_sec = time.time()
|
1440 |
+
stats = classifier_trainer.run(flags.FLAGS)
|
1441 |
+
wall_time_sec = time.time() - start_time_sec
|
1442 |
+
|
1443 |
+
super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark(
|
1444 |
+
stats,
|
1445 |
+
wall_time_sec,
|
1446 |
+
top_1_min=top_1_min,
|
1447 |
+
top_1_max=top_1_max,
|
1448 |
+
total_batch_size=FLAGS.batch_size,
|
1449 |
+
log_steps=100)
|
1450 |
+
|
1451 |
+
def _get_model_dir(self, folder_name):
|
1452 |
+
return os.path.join(self.output_dir, folder_name)
|
1453 |
+
|
1454 |
+
def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
|
1455 |
+
"""Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
|
1456 |
+
self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')
|
1457 |
+
|
1458 |
+
def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
|
1459 |
+
"""Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
|
1460 |
+
self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')
|
1461 |
+
|
1462 |
+
def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
|
1463 |
+
"""Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
|
1464 |
+
self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')
|
1465 |
+
|
1466 |
+
def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
|
1467 |
+
"""Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
|
1468 |
+
self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')
|
1469 |
+
|
1470 |
+
|
1471 |
+
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
|
1472 |
+
"""Resnet50 distributed benchmark tests with multiple workers."""
|
1473 |
+
|
1474 |
+
def __init__(self, output_dir=None, default_flags=None):
|
1475 |
+
super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
|
1476 |
+
output_dir=output_dir, default_flags=default_flags)
|
1477 |
+
|
1478 |
+
def _benchmark_common(self, eager, num_workers, all_reduce_alg):
|
1479 |
+
"""Common to all benchmarks in this class."""
|
1480 |
+
self._setup()
|
1481 |
+
|
1482 |
+
num_gpus = 8
|
1483 |
+
FLAGS.num_gpus = num_gpus
|
1484 |
+
FLAGS.dtype = 'fp16'
|
1485 |
+
FLAGS.enable_eager = eager
|
1486 |
+
FLAGS.enable_xla = False
|
1487 |
+
FLAGS.distribution_strategy = 'multi_worker_mirrored'
|
1488 |
+
FLAGS.tf_gpu_thread_mode = 'gpu_private'
|
1489 |
+
FLAGS.datasets_num_private_threads = 32
|
1490 |
+
FLAGS.model_dir = self._get_model_dir(
|
1491 |
+
'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
|
1492 |
+
'eager' if eager else 'graph', num_workers, all_reduce_alg))
|
1493 |
+
FLAGS.batch_size = 256 * num_gpus * num_workers
|
1494 |
+
FLAGS.all_reduce_alg = all_reduce_alg
|
1495 |
+
|
1496 |
+
self._run_and_report_benchmark()
|
1497 |
+
|
1498 |
+
def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
|
1499 |
+
"""Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
|
1500 |
+
self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')
|
1501 |
+
|
1502 |
+
def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
|
1503 |
+
"""Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
|
1504 |
+
self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')
|
1505 |
+
|
1506 |
+
def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
|
1507 |
+
"""Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
|
1508 |
+
self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')
|
1509 |
+
|
1510 |
+
def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
|
1511 |
+
"""Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
|
1512 |
+
self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')
|
1513 |
+
|
1514 |
+
def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
|
1515 |
+
"""Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
|
1516 |
+
self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')
|
1517 |
+
|
1518 |
+
def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
|
1519 |
+
"""Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
|
1520 |
+
self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')
|
1521 |
+
|
1522 |
+
|
1523 |
+
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
|
1524 |
+
"""Resnet50 multi-worker synthetic data benchmark tests."""
|
1525 |
+
|
1526 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
1527 |
+
def_flags = {}
|
1528 |
+
def_flags['skip_eval'] = True
|
1529 |
+
def_flags['report_accuracy_metrics'] = False
|
1530 |
+
def_flags['use_synthetic_data'] = True
|
1531 |
+
def_flags['train_steps'] = 110
|
1532 |
+
def_flags['log_steps'] = 10
|
1533 |
+
|
1534 |
+
super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
|
1535 |
+
output_dir=output_dir, default_flags=def_flags)
|
1536 |
+
|
1537 |
+
|
1538 |
+
class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark):
|
1539 |
+
"""Resnet50 multi-worker real data benchmark tests."""
|
1540 |
+
|
1541 |
+
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
|
1542 |
+
def_flags = {}
|
1543 |
+
def_flags['skip_eval'] = True
|
1544 |
+
def_flags['report_accuracy_metrics'] = False
|
1545 |
+
def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
|
1546 |
+
def_flags['train_steps'] = 110
|
1547 |
+
def_flags['log_steps'] = 10
|
1548 |
+
|
1549 |
+
super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__(
|
1550 |
+
output_dir=output_dir, default_flags=def_flags)
|
1551 |
+
|
1552 |
+
|
1553 |
+
# TODO(kimjaehong): It also should be also cover other metheods of model
|
1554 |
+
# optimization techniques. In that time, this class will change to something
|
1555 |
+
# like 'KerasModelOptimizationAccuracyBase'.
|
1556 |
+
class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark):
|
1557 |
+
"""Benchmark accuracy tests for pruning method."""
|
1558 |
+
|
1559 |
+
def __init__(self,
|
1560 |
+
output_dir=None,
|
1561 |
+
root_data_dir=None,
|
1562 |
+
default_flags=None,
|
1563 |
+
**kwargs):
|
1564 |
+
"""A accuracy benchmark class for pruning method.
|
1565 |
+
|
1566 |
+
Args:
|
1567 |
+
output_dir: directory where to output e.g. log files
|
1568 |
+
root_data_dir: directory under which to look for dataset
|
1569 |
+
default_flags: default flags
|
1570 |
+
**kwargs: arbitrary named arguments. This is needed to make the
|
1571 |
+
constructor forward compatible in case PerfZero provides more
|
1572 |
+
named arguments before updating the constructor.
|
1573 |
+
"""
|
1574 |
+
if default_flags is None:
|
1575 |
+
default_flags = {}
|
1576 |
+
default_flags['pruning_method'] = 'polynomial_decay'
|
1577 |
+
default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
|
1578 |
+
|
1579 |
+
flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
|
1580 |
+
|
1581 |
+
super(KerasPruningAccuracyBase, self).__init__(
|
1582 |
+
output_dir=output_dir,
|
1583 |
+
flag_methods=flag_methods,
|
1584 |
+
default_flags=default_flags,
|
1585 |
+
**kwargs)
|
1586 |
+
|
1587 |
+
def benchmark_8_gpu(self):
|
1588 |
+
"""Test Keras model with eager, dist_strat and 8 GPUs."""
|
1589 |
+
self._setup()
|
1590 |
+
FLAGS.num_gpus = 8
|
1591 |
+
FLAGS.batch_size = 32 * 8
|
1592 |
+
FLAGS.train_epochs = 90
|
1593 |
+
FLAGS.epochs_between_evals = 10
|
1594 |
+
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
|
1595 |
+
FLAGS.dtype = 'fp32'
|
1596 |
+
FLAGS.enable_eager = True
|
1597 |
+
self._run_and_report_benchmark()
|
1598 |
+
|
1599 |
+
@benchmark_wrappers.enable_runtime_flags
|
1600 |
+
def _run_and_report_benchmark(self,
|
1601 |
+
top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
|
1602 |
+
'RESNET50_FINETUNE_PRUNING'][0],
|
1603 |
+
top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
|
1604 |
+
'RESNET50_FINETUNE_PRUNING'][1]):
|
1605 |
+
start_time_sec = time.time()
|
1606 |
+
stats = resnet_imagenet_main.run(flags.FLAGS)
|
1607 |
+
wall_time_sec = time.time() - start_time_sec
|
1608 |
+
|
1609 |
+
super(KerasPruningAccuracyBase, self)._report_benchmark(
|
1610 |
+
stats,
|
1611 |
+
wall_time_sec,
|
1612 |
+
top_1_min=top_1_min,
|
1613 |
+
top_1_max=top_1_max,
|
1614 |
+
total_batch_size=FLAGS.batch_size,
|
1615 |
+
log_steps=100)
|
1616 |
+
|
1617 |
+
|
1618 |
+
class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase):
|
1619 |
+
"""Benchmark accuracy tests for MobilenetV1 with pruning method."""
|
1620 |
+
|
1621 |
+
def __init__(self, root_data_dir=None, **kwargs):
|
1622 |
+
default_flags = {
|
1623 |
+
'model': 'mobilenet',
|
1624 |
+
'optimizer': 'mobilenet_default',
|
1625 |
+
'initial_learning_rate_per_sample': 0.00007,
|
1626 |
+
'pretrained_filepath': tf.train.latest_checkpoint(
|
1627 |
+
os.path.join(root_data_dir, 'mobilenet_v1')),
|
1628 |
+
'pruning_begin_step': 0,
|
1629 |
+
'pruning_end_step': 100000,
|
1630 |
+
'pruning_initial_sparsity': 0.0,
|
1631 |
+
'pruning_final_sparsity': 0.5,
|
1632 |
+
'pruning_frequency': 100,
|
1633 |
+
}
|
1634 |
+
super(MobilenetV1KerasPruningAccuracy, self).__init__(
|
1635 |
+
root_data_dir=root_data_dir,
|
1636 |
+
default_flags=default_flags,
|
1637 |
+
**kwargs)
|
1638 |
+
|
1639 |
+
def _run_and_report_benchmark(self):
|
1640 |
+
super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark(
|
1641 |
+
top_1_min=\
|
1642 |
+
MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0],
|
1643 |
+
top_1_max=\
|
1644 |
+
MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1])
|
1645 |
+
|
1646 |
+
|
1647 |
+
class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase):
|
1648 |
+
"""Benchmark accuracy tests for resnet50 with pruning method."""
|
1649 |
+
|
1650 |
+
def __init__(self, root_data_dir=None, **kwargs):
|
1651 |
+
default_flags = {
|
1652 |
+
'model': 'resnet50_v1.5',
|
1653 |
+
'optimizer': 'mobilenet_default',
|
1654 |
+
'initial_learning_rate_per_sample': 0.0000039,
|
1655 |
+
'pretrained_filepath': tf.train.latest_checkpoint(
|
1656 |
+
os.path.join(root_data_dir, 'resnet50')),
|
1657 |
+
'pruning_begin_step': 0,
|
1658 |
+
'pruning_end_step': 50000,
|
1659 |
+
'pruning_initial_sparsity': 0.0,
|
1660 |
+
'pruning_final_sparsity': 0.5,
|
1661 |
+
'pruning_frequency': 100,
|
1662 |
+
}
|
1663 |
+
super(Resnet50KerasPruningAccuracy, self).__init__(
|
1664 |
+
root_data_dir=root_data_dir,
|
1665 |
+
default_flags=default_flags,
|
1666 |
+
**kwargs)
|
1667 |
+
|
1668 |
+
def _run_and_report_benchmark(self):
|
1669 |
+
super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark(
|
1670 |
+
top_1_min=\
|
1671 |
+
MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0],
|
1672 |
+
top_1_max=\
|
1673 |
+
MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1])
|
1674 |
+
|
1675 |
+
|
1676 |
+
class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase):
|
1677 |
+
"""Pruning method benchmarks."""
|
1678 |
+
|
1679 |
+
def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
|
1680 |
+
if default_flags is None:
|
1681 |
+
default_flags = {}
|
1682 |
+
default_flags.update({
|
1683 |
+
'skip_eval': True,
|
1684 |
+
'report_accuracy_metrics': False,
|
1685 |
+
'data_dir': os.path.join(root_data_dir, 'imagenet'),
|
1686 |
+
'train_steps': 110,
|
1687 |
+
'log_steps': 10,
|
1688 |
+
'pruning_method': 'polynomial_decay',
|
1689 |
+
'pruning_begin_step': 0,
|
1690 |
+
'pruning_end_step': 50000,
|
1691 |
+
'pruning_initial_sparsity': 0,
|
1692 |
+
'pruning_final_sparsity': 0.5,
|
1693 |
+
'pruning_frequency': 100,
|
1694 |
+
})
|
1695 |
+
super(KerasPruningBenchmarkRealBase, self).__init__(
|
1696 |
+
default_flags=default_flags, **kwargs)
|
1697 |
+
|
1698 |
+
|
1699 |
+
class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
|
1700 |
+
"""Pruning method benchmarks for MobilenetV1."""
|
1701 |
+
|
1702 |
+
def __init__(self, **kwargs):
|
1703 |
+
default_flags = {
|
1704 |
+
'model': 'mobilenet',
|
1705 |
+
'optimizer': 'mobilenet_default',
|
1706 |
+
}
|
1707 |
+
super(MobilenetV1KerasPruningBenchmarkReal, self).__init__(
|
1708 |
+
default_flags=default_flags, **kwargs)
|
1709 |
+
|
1710 |
+
|
1711 |
+
class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
|
1712 |
+
"""Pruning method benchmarks for resnet50."""
|
1713 |
+
|
1714 |
+
def __init__(self, **kwargs):
|
1715 |
+
default_flags = {
|
1716 |
+
'model': 'resnet50_v1.5',
|
1717 |
+
'optimizer': 'mobilenet_default',
|
1718 |
+
}
|
1719 |
+
super(Resnet50KerasPruningBenchmarkReal, self).__init__(
|
1720 |
+
default_flags=default_flags, **kwargs)
|
1721 |
+
|
1722 |
+
|
1723 |
+
if __name__ == '__main__':
|
1724 |
+
tf.test.main()
|
models/official/benchmark/models/__init__.py
ADDED
File without changes
|
models/official/benchmark/models/cifar_preprocessing.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Provides utilities to Cifar-10 dataset."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import os
|
22 |
+
from absl import logging
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from official.vision.image_classification.resnet import imagenet_preprocessing
|
26 |
+
|
27 |
+
HEIGHT = 32
|
28 |
+
WIDTH = 32
|
29 |
+
NUM_CHANNELS = 3
|
30 |
+
_DEFAULT_IMAGE_BYTES = HEIGHT * WIDTH * NUM_CHANNELS
|
31 |
+
# The record is the image plus a one-byte label
|
32 |
+
_RECORD_BYTES = _DEFAULT_IMAGE_BYTES + 1
|
33 |
+
|
34 |
+
# TODO(tobyboyd): Change to best practice 45K(train)/5K(val)/10K(test) splits.
|
35 |
+
NUM_IMAGES = {
|
36 |
+
'train': 50000,
|
37 |
+
'validation': 10000,
|
38 |
+
}
|
39 |
+
_NUM_DATA_FILES = 5
|
40 |
+
NUM_CLASSES = 10
|
41 |
+
|
42 |
+
|
43 |
+
def parse_record(raw_record, is_training, dtype):
|
44 |
+
"""Parses a record containing a training example of an image.
|
45 |
+
|
46 |
+
The input record is parsed into a label and image, and the image is passed
|
47 |
+
through preprocessing steps (cropping, flipping, and so on).
|
48 |
+
|
49 |
+
This method converts the label to one hot to fit the loss function.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
raw_record: scalar Tensor tf.string containing a serialized
|
53 |
+
Example protocol buffer.
|
54 |
+
is_training: A boolean denoting whether the input is for training.
|
55 |
+
dtype: Data type to use for input images.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
Tuple with processed image tensor and one-hot-encoded label tensor.
|
59 |
+
"""
|
60 |
+
# Convert bytes to a vector of uint8 that is record_bytes long.
|
61 |
+
record_vector = tf.io.decode_raw(raw_record, tf.uint8)
|
62 |
+
|
63 |
+
# The first byte represents the label, which we convert from uint8 to int32
|
64 |
+
# and then to one-hot.
|
65 |
+
label = tf.cast(record_vector[0], tf.int32)
|
66 |
+
|
67 |
+
# The remaining bytes after the label represent the image, which we reshape
|
68 |
+
# from [depth * height * width] to [depth, height, width].
|
69 |
+
depth_major = tf.reshape(record_vector[1:_RECORD_BYTES],
|
70 |
+
[NUM_CHANNELS, HEIGHT, WIDTH])
|
71 |
+
|
72 |
+
# Convert from [depth, height, width] to [height, width, depth], and cast as
|
73 |
+
# float32.
|
74 |
+
image = tf.cast(tf.transpose(a=depth_major, perm=[1, 2, 0]), tf.float32)
|
75 |
+
|
76 |
+
image = preprocess_image(image, is_training)
|
77 |
+
image = tf.cast(image, dtype)
|
78 |
+
|
79 |
+
return image, label
|
80 |
+
|
81 |
+
|
82 |
+
def preprocess_image(image, is_training):
|
83 |
+
"""Preprocess a single image of layout [height, width, depth]."""
|
84 |
+
if is_training:
|
85 |
+
# Resize the image to add four extra pixels on each side.
|
86 |
+
image = tf.image.resize_with_crop_or_pad(
|
87 |
+
image, HEIGHT + 8, WIDTH + 8)
|
88 |
+
|
89 |
+
# Randomly crop a [HEIGHT, WIDTH] section of the image.
|
90 |
+
image = tf.image.random_crop(image, [HEIGHT, WIDTH, NUM_CHANNELS])
|
91 |
+
|
92 |
+
# Randomly flip the image horizontally.
|
93 |
+
image = tf.image.random_flip_left_right(image)
|
94 |
+
|
95 |
+
# Subtract off the mean and divide by the variance of the pixels.
|
96 |
+
image = tf.image.per_image_standardization(image)
|
97 |
+
return image
|
98 |
+
|
99 |
+
|
100 |
+
def get_filenames(is_training, data_dir):
|
101 |
+
"""Returns a list of filenames."""
|
102 |
+
assert tf.io.gfile.exists(data_dir), (
|
103 |
+
'Run cifar10_download_and_extract.py first to download and extract the '
|
104 |
+
'CIFAR-10 data.')
|
105 |
+
|
106 |
+
if is_training:
|
107 |
+
return [
|
108 |
+
os.path.join(data_dir, 'data_batch_%d.bin' % i)
|
109 |
+
for i in range(1, _NUM_DATA_FILES + 1)
|
110 |
+
]
|
111 |
+
else:
|
112 |
+
return [os.path.join(data_dir, 'test_batch.bin')]
|
113 |
+
|
114 |
+
|
115 |
+
def input_fn(is_training,
|
116 |
+
data_dir,
|
117 |
+
batch_size,
|
118 |
+
dtype=tf.float32,
|
119 |
+
datasets_num_private_threads=None,
|
120 |
+
parse_record_fn=parse_record,
|
121 |
+
input_context=None,
|
122 |
+
drop_remainder=False):
|
123 |
+
"""Input function which provides batches for train or eval.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
is_training: A boolean denoting whether the input is for training.
|
127 |
+
data_dir: The directory containing the input data.
|
128 |
+
batch_size: The number of samples per batch.
|
129 |
+
dtype: Data type to use for images/features
|
130 |
+
datasets_num_private_threads: Number of private threads for tf.data.
|
131 |
+
parse_record_fn: Function to use for parsing the records.
|
132 |
+
input_context: A `tf.distribute.InputContext` object passed in by
|
133 |
+
`tf.distribute.Strategy`.
|
134 |
+
drop_remainder: A boolean indicates whether to drop the remainder of the
|
135 |
+
batches. If True, the batch dimension will be static.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
A dataset that can be used for iteration.
|
139 |
+
"""
|
140 |
+
filenames = get_filenames(is_training, data_dir)
|
141 |
+
dataset = tf.data.FixedLengthRecordDataset(filenames, _RECORD_BYTES)
|
142 |
+
|
143 |
+
if input_context:
|
144 |
+
logging.info(
|
145 |
+
'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d',
|
146 |
+
input_context.input_pipeline_id, input_context.num_input_pipelines)
|
147 |
+
dataset = dataset.shard(input_context.num_input_pipelines,
|
148 |
+
input_context.input_pipeline_id)
|
149 |
+
|
150 |
+
return imagenet_preprocessing.process_record_dataset(
|
151 |
+
dataset=dataset,
|
152 |
+
is_training=is_training,
|
153 |
+
batch_size=batch_size,
|
154 |
+
shuffle_buffer=NUM_IMAGES['train'],
|
155 |
+
parse_record_fn=parse_record_fn,
|
156 |
+
dtype=dtype,
|
157 |
+
datasets_num_private_threads=datasets_num_private_threads,
|
158 |
+
drop_remainder=drop_remainder
|
159 |
+
)
|
models/official/benchmark/models/resnet_cifar_main.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Runs a ResNet model on the Cifar-10 dataset."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
from absl import app
|
22 |
+
from absl import flags
|
23 |
+
from absl import logging
|
24 |
+
import numpy as np
|
25 |
+
import tensorflow as tf
|
26 |
+
from official.benchmark.models import cifar_preprocessing
|
27 |
+
from official.benchmark.models import resnet_cifar_model
|
28 |
+
from official.benchmark.models import synthetic_util
|
29 |
+
from official.utils.flags import core as flags_core
|
30 |
+
from official.utils.misc import distribution_utils
|
31 |
+
from official.utils.misc import keras_utils
|
32 |
+
from official.vision.image_classification.resnet import common
|
33 |
+
|
34 |
+
|
35 |
+
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
|
36 |
+
(0.1, 91), (0.01, 136), (0.001, 182)
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
def learning_rate_schedule(current_epoch,
|
41 |
+
current_batch,
|
42 |
+
batches_per_epoch,
|
43 |
+
batch_size):
|
44 |
+
"""Handles linear scaling rule and LR decay.
|
45 |
+
|
46 |
+
Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
|
47 |
+
provided scaling factor.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
current_epoch: integer, current epoch indexed from 0.
|
51 |
+
current_batch: integer, current batch in the current epoch, indexed from 0.
|
52 |
+
batches_per_epoch: integer, number of steps in an epoch.
|
53 |
+
batch_size: integer, total batch sized.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
Adjusted learning rate.
|
57 |
+
"""
|
58 |
+
del current_batch, batches_per_epoch # not used
|
59 |
+
initial_learning_rate = common.BASE_LEARNING_RATE * batch_size / 128
|
60 |
+
learning_rate = initial_learning_rate
|
61 |
+
for mult, start_epoch in LR_SCHEDULE:
|
62 |
+
if current_epoch >= start_epoch:
|
63 |
+
learning_rate = initial_learning_rate * mult
|
64 |
+
else:
|
65 |
+
break
|
66 |
+
return learning_rate
|
67 |
+
|
68 |
+
|
69 |
+
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
|
70 |
+
"""Callback to update learning rate on every batch (not epoch boundaries).
|
71 |
+
|
72 |
+
N.B. Only support Keras optimizers, not TF optimizers.
|
73 |
+
|
74 |
+
Attributes:
|
75 |
+
schedule: a function that takes an epoch index and a batch index as input
|
76 |
+
(both integer, indexed from 0) and returns a new learning rate as
|
77 |
+
output (float).
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __init__(self, schedule, batch_size, steps_per_epoch):
|
81 |
+
super(LearningRateBatchScheduler, self).__init__()
|
82 |
+
self.schedule = schedule
|
83 |
+
self.steps_per_epoch = steps_per_epoch
|
84 |
+
self.batch_size = batch_size
|
85 |
+
self.epochs = -1
|
86 |
+
self.prev_lr = -1
|
87 |
+
|
88 |
+
def on_epoch_begin(self, epoch, logs=None):
|
89 |
+
if not hasattr(self.model.optimizer, 'learning_rate'):
|
90 |
+
raise ValueError('Optimizer must have a "learning_rate" attribute.')
|
91 |
+
self.epochs += 1
|
92 |
+
|
93 |
+
def on_batch_begin(self, batch, logs=None):
|
94 |
+
"""Executes before step begins."""
|
95 |
+
lr = self.schedule(self.epochs,
|
96 |
+
batch,
|
97 |
+
self.steps_per_epoch,
|
98 |
+
self.batch_size)
|
99 |
+
if not isinstance(lr, (float, np.float32, np.float64)):
|
100 |
+
raise ValueError('The output of the "schedule" function should be float.')
|
101 |
+
if lr != self.prev_lr:
|
102 |
+
self.model.optimizer.learning_rate = lr # lr should be a float here
|
103 |
+
self.prev_lr = lr
|
104 |
+
logging.debug(
|
105 |
+
'Epoch %05d Batch %05d: LearningRateBatchScheduler '
|
106 |
+
'change learning rate to %s.', self.epochs, batch, lr)
|
107 |
+
|
108 |
+
|
109 |
+
def run(flags_obj):
|
110 |
+
"""Run ResNet Cifar-10 training and eval loop using native Keras APIs.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
flags_obj: An object containing parsed flag values.
|
114 |
+
|
115 |
+
Raises:
|
116 |
+
ValueError: If fp16 is passed as it is not currently supported.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
Dictionary of training and eval stats.
|
120 |
+
"""
|
121 |
+
keras_utils.set_session_config(
|
122 |
+
enable_xla=flags_obj.enable_xla)
|
123 |
+
|
124 |
+
# Execute flag override logic for better model performance
|
125 |
+
if flags_obj.tf_gpu_thread_mode:
|
126 |
+
keras_utils.set_gpu_thread_mode_and_count(
|
127 |
+
per_gpu_thread_count=flags_obj.per_gpu_thread_count,
|
128 |
+
gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
|
129 |
+
num_gpus=flags_obj.num_gpus,
|
130 |
+
datasets_num_private_threads=flags_obj.datasets_num_private_threads)
|
131 |
+
common.set_cudnn_batchnorm_mode()
|
132 |
+
|
133 |
+
dtype = flags_core.get_tf_dtype(flags_obj)
|
134 |
+
if dtype == 'fp16':
|
135 |
+
raise ValueError('dtype fp16 is not supported in Keras. Use the default '
|
136 |
+
'value(fp32).')
|
137 |
+
|
138 |
+
data_format = flags_obj.data_format
|
139 |
+
if data_format is None:
|
140 |
+
data_format = ('channels_first' if tf.config.list_physical_devices('GPU')
|
141 |
+
else 'channels_last')
|
142 |
+
tf.keras.backend.set_image_data_format(data_format)
|
143 |
+
|
144 |
+
strategy = distribution_utils.get_distribution_strategy(
|
145 |
+
distribution_strategy=flags_obj.distribution_strategy,
|
146 |
+
num_gpus=flags_obj.num_gpus,
|
147 |
+
all_reduce_alg=flags_obj.all_reduce_alg,
|
148 |
+
num_packs=flags_obj.num_packs)
|
149 |
+
|
150 |
+
if strategy:
|
151 |
+
# flags_obj.enable_get_next_as_optional controls whether enabling
|
152 |
+
# get_next_as_optional behavior in DistributedIterator. If true, last
|
153 |
+
# partial batch can be supported.
|
154 |
+
strategy.extended.experimental_enable_get_next_as_optional = (
|
155 |
+
flags_obj.enable_get_next_as_optional
|
156 |
+
)
|
157 |
+
|
158 |
+
strategy_scope = distribution_utils.get_strategy_scope(strategy)
|
159 |
+
|
160 |
+
if flags_obj.use_synthetic_data:
|
161 |
+
synthetic_util.set_up_synthetic_data()
|
162 |
+
input_fn = common.get_synth_input_fn(
|
163 |
+
height=cifar_preprocessing.HEIGHT,
|
164 |
+
width=cifar_preprocessing.WIDTH,
|
165 |
+
num_channels=cifar_preprocessing.NUM_CHANNELS,
|
166 |
+
num_classes=cifar_preprocessing.NUM_CLASSES,
|
167 |
+
dtype=flags_core.get_tf_dtype(flags_obj),
|
168 |
+
drop_remainder=True)
|
169 |
+
else:
|
170 |
+
synthetic_util.undo_set_up_synthetic_data()
|
171 |
+
input_fn = cifar_preprocessing.input_fn
|
172 |
+
|
173 |
+
train_input_dataset = input_fn(
|
174 |
+
is_training=True,
|
175 |
+
data_dir=flags_obj.data_dir,
|
176 |
+
batch_size=flags_obj.batch_size,
|
177 |
+
parse_record_fn=cifar_preprocessing.parse_record,
|
178 |
+
datasets_num_private_threads=flags_obj.datasets_num_private_threads,
|
179 |
+
dtype=dtype,
|
180 |
+
# Setting drop_remainder to avoid the partial batch logic in normalization
|
181 |
+
# layer, which triggers tf.where and leads to extra memory copy of input
|
182 |
+
# sizes between host and GPU.
|
183 |
+
drop_remainder=(not flags_obj.enable_get_next_as_optional))
|
184 |
+
|
185 |
+
eval_input_dataset = None
|
186 |
+
if not flags_obj.skip_eval:
|
187 |
+
eval_input_dataset = input_fn(
|
188 |
+
is_training=False,
|
189 |
+
data_dir=flags_obj.data_dir,
|
190 |
+
batch_size=flags_obj.batch_size,
|
191 |
+
parse_record_fn=cifar_preprocessing.parse_record)
|
192 |
+
|
193 |
+
steps_per_epoch = (
|
194 |
+
cifar_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
|
195 |
+
lr_schedule = 0.1
|
196 |
+
if flags_obj.use_tensor_lr:
|
197 |
+
initial_learning_rate = common.BASE_LEARNING_RATE * flags_obj.batch_size / 128
|
198 |
+
lr_schedule = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
|
199 |
+
boundaries=list(p[1] * steps_per_epoch for p in LR_SCHEDULE),
|
200 |
+
values=[initial_learning_rate] +
|
201 |
+
list(p[0] * initial_learning_rate for p in LR_SCHEDULE))
|
202 |
+
|
203 |
+
with strategy_scope:
|
204 |
+
optimizer = common.get_optimizer(lr_schedule)
|
205 |
+
model = resnet_cifar_model.resnet56(classes=cifar_preprocessing.NUM_CLASSES)
|
206 |
+
model.compile(
|
207 |
+
loss='sparse_categorical_crossentropy',
|
208 |
+
optimizer=optimizer,
|
209 |
+
metrics=(['sparse_categorical_accuracy']
|
210 |
+
if flags_obj.report_accuracy_metrics else None),
|
211 |
+
run_eagerly=flags_obj.run_eagerly)
|
212 |
+
|
213 |
+
train_epochs = flags_obj.train_epochs
|
214 |
+
|
215 |
+
callbacks = common.get_callbacks()
|
216 |
+
|
217 |
+
if not flags_obj.use_tensor_lr:
|
218 |
+
lr_callback = LearningRateBatchScheduler(
|
219 |
+
schedule=learning_rate_schedule,
|
220 |
+
batch_size=flags_obj.batch_size,
|
221 |
+
steps_per_epoch=steps_per_epoch)
|
222 |
+
callbacks.append(lr_callback)
|
223 |
+
|
224 |
+
# if mutliple epochs, ignore the train_steps flag.
|
225 |
+
if train_epochs <= 1 and flags_obj.train_steps:
|
226 |
+
steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
|
227 |
+
train_epochs = 1
|
228 |
+
|
229 |
+
num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
|
230 |
+
flags_obj.batch_size)
|
231 |
+
|
232 |
+
validation_data = eval_input_dataset
|
233 |
+
if flags_obj.skip_eval:
|
234 |
+
if flags_obj.set_learning_phase_to_train:
|
235 |
+
# TODO(haoyuzhang): Understand slowdown of setting learning phase when
|
236 |
+
# not using distribution strategy.
|
237 |
+
tf.keras.backend.set_learning_phase(1)
|
238 |
+
num_eval_steps = None
|
239 |
+
validation_data = None
|
240 |
+
|
241 |
+
if not strategy and flags_obj.explicit_gpu_placement:
|
242 |
+
# TODO(b/135607227): Add device scope automatically in Keras training loop
|
243 |
+
# when not using distribition strategy.
|
244 |
+
no_dist_strat_device = tf.device('/device:GPU:0')
|
245 |
+
no_dist_strat_device.__enter__()
|
246 |
+
|
247 |
+
history = model.fit(train_input_dataset,
|
248 |
+
epochs=train_epochs,
|
249 |
+
steps_per_epoch=steps_per_epoch,
|
250 |
+
callbacks=callbacks,
|
251 |
+
validation_steps=num_eval_steps,
|
252 |
+
validation_data=validation_data,
|
253 |
+
validation_freq=flags_obj.epochs_between_evals,
|
254 |
+
verbose=2)
|
255 |
+
eval_output = None
|
256 |
+
if not flags_obj.skip_eval:
|
257 |
+
eval_output = model.evaluate(eval_input_dataset,
|
258 |
+
steps=num_eval_steps,
|
259 |
+
verbose=2)
|
260 |
+
|
261 |
+
if not strategy and flags_obj.explicit_gpu_placement:
|
262 |
+
no_dist_strat_device.__exit__()
|
263 |
+
|
264 |
+
stats = common.build_stats(history, eval_output, callbacks)
|
265 |
+
return stats
|
266 |
+
|
267 |
+
|
268 |
+
def define_cifar_flags():
|
269 |
+
common.define_keras_flags(dynamic_loss_scale=False)
|
270 |
+
|
271 |
+
flags_core.set_defaults(data_dir='/tmp/cifar10_data/cifar-10-batches-bin',
|
272 |
+
model_dir='/tmp/cifar10_model',
|
273 |
+
epochs_between_evals=10,
|
274 |
+
batch_size=128)
|
275 |
+
|
276 |
+
|
277 |
+
def main(_):
|
278 |
+
return run(flags.FLAGS)
|
279 |
+
|
280 |
+
|
281 |
+
if __name__ == '__main__':
|
282 |
+
logging.set_verbosity(logging.INFO)
|
283 |
+
define_cifar_flags()
|
284 |
+
app.run(main)
|
models/official/benchmark/models/resnet_cifar_model.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""ResNet56 model for Keras adapted from tf.keras.applications.ResNet50.
|
16 |
+
|
17 |
+
# Reference:
|
18 |
+
- [Deep Residual Learning for Image Recognition](
|
19 |
+
https://arxiv.org/abs/1512.03385)
|
20 |
+
Adapted from code contributed by BigMoyan.
|
21 |
+
"""
|
22 |
+
from __future__ import absolute_import
|
23 |
+
from __future__ import division
|
24 |
+
from __future__ import print_function
|
25 |
+
|
26 |
+
import functools
|
27 |
+
import tensorflow as tf
|
28 |
+
from tensorflow.python.keras import backend
|
29 |
+
from tensorflow.python.keras import initializers
|
30 |
+
from tensorflow.python.keras import layers
|
31 |
+
from tensorflow.python.keras import regularizers
|
32 |
+
|
33 |
+
|
34 |
+
BATCH_NORM_DECAY = 0.997
|
35 |
+
BATCH_NORM_EPSILON = 1e-5
|
36 |
+
L2_WEIGHT_DECAY = 2e-4
|
37 |
+
|
38 |
+
|
39 |
+
def identity_building_block(input_tensor,
|
40 |
+
kernel_size,
|
41 |
+
filters,
|
42 |
+
stage,
|
43 |
+
block,
|
44 |
+
training=None):
|
45 |
+
"""The identity block is the block that has no conv layer at shortcut.
|
46 |
+
|
47 |
+
Arguments:
|
48 |
+
input_tensor: input tensor
|
49 |
+
kernel_size: default 3, the kernel size of
|
50 |
+
middle conv layer at main path
|
51 |
+
filters: list of integers, the filters of 3 conv layer at main path
|
52 |
+
stage: integer, current stage label, used for generating layer names
|
53 |
+
block: current block label, used for generating layer names
|
54 |
+
training: Only used if training keras model with Estimator. In other
|
55 |
+
scenarios it is handled automatically.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
Output tensor for the block.
|
59 |
+
"""
|
60 |
+
filters1, filters2 = filters
|
61 |
+
if backend.image_data_format() == 'channels_last':
|
62 |
+
bn_axis = 3
|
63 |
+
else:
|
64 |
+
bn_axis = 1
|
65 |
+
conv_name_base = 'res' + str(stage) + block + '_branch'
|
66 |
+
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
67 |
+
|
68 |
+
x = layers.Conv2D(filters1, kernel_size,
|
69 |
+
padding='same', use_bias=False,
|
70 |
+
kernel_initializer='he_normal',
|
71 |
+
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
72 |
+
name=conv_name_base + '2a')(input_tensor)
|
73 |
+
x = layers.BatchNormalization(
|
74 |
+
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
|
75 |
+
name=bn_name_base + '2a')(x, training=training)
|
76 |
+
x = layers.Activation('relu')(x)
|
77 |
+
|
78 |
+
x = layers.Conv2D(filters2, kernel_size,
|
79 |
+
padding='same', use_bias=False,
|
80 |
+
kernel_initializer='he_normal',
|
81 |
+
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
82 |
+
name=conv_name_base + '2b')(x)
|
83 |
+
x = layers.BatchNormalization(
|
84 |
+
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
|
85 |
+
name=bn_name_base + '2b')(x, training=training)
|
86 |
+
|
87 |
+
x = layers.add([x, input_tensor])
|
88 |
+
x = layers.Activation('relu')(x)
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
def conv_building_block(input_tensor,
|
93 |
+
kernel_size,
|
94 |
+
filters,
|
95 |
+
stage,
|
96 |
+
block,
|
97 |
+
strides=(2, 2),
|
98 |
+
training=None):
|
99 |
+
"""A block that has a conv layer at shortcut.
|
100 |
+
|
101 |
+
Arguments:
|
102 |
+
input_tensor: input tensor
|
103 |
+
kernel_size: default 3, the kernel size of
|
104 |
+
middle conv layer at main path
|
105 |
+
filters: list of integers, the filters of 3 conv layer at main path
|
106 |
+
stage: integer, current stage label, used for generating layer names
|
107 |
+
block: current block label, used for generating layer names
|
108 |
+
strides: Strides for the first conv layer in the block.
|
109 |
+
training: Only used if training keras model with Estimator. In other
|
110 |
+
scenarios it is handled automatically.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
Output tensor for the block.
|
114 |
+
|
115 |
+
Note that from stage 3,
|
116 |
+
the first conv layer at main path is with strides=(2, 2)
|
117 |
+
And the shortcut should have strides=(2, 2) as well
|
118 |
+
"""
|
119 |
+
filters1, filters2 = filters
|
120 |
+
if tf.keras.backend.image_data_format() == 'channels_last':
|
121 |
+
bn_axis = 3
|
122 |
+
else:
|
123 |
+
bn_axis = 1
|
124 |
+
conv_name_base = 'res' + str(stage) + block + '_branch'
|
125 |
+
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
126 |
+
|
127 |
+
x = layers.Conv2D(filters1, kernel_size, strides=strides,
|
128 |
+
padding='same', use_bias=False,
|
129 |
+
kernel_initializer='he_normal',
|
130 |
+
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
131 |
+
name=conv_name_base + '2a')(input_tensor)
|
132 |
+
x = layers.BatchNormalization(
|
133 |
+
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
|
134 |
+
name=bn_name_base + '2a')(x, training=training)
|
135 |
+
x = layers.Activation('relu')(x)
|
136 |
+
|
137 |
+
x = layers.Conv2D(filters2, kernel_size, padding='same', use_bias=False,
|
138 |
+
kernel_initializer='he_normal',
|
139 |
+
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
140 |
+
name=conv_name_base + '2b')(x)
|
141 |
+
x = layers.BatchNormalization(
|
142 |
+
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
|
143 |
+
name=bn_name_base + '2b')(x, training=training)
|
144 |
+
|
145 |
+
shortcut = layers.Conv2D(filters2, (1, 1), strides=strides, use_bias=False,
|
146 |
+
kernel_initializer='he_normal',
|
147 |
+
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
148 |
+
name=conv_name_base + '1')(input_tensor)
|
149 |
+
shortcut = layers.BatchNormalization(
|
150 |
+
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
|
151 |
+
name=bn_name_base + '1')(shortcut, training=training)
|
152 |
+
|
153 |
+
x = layers.add([x, shortcut])
|
154 |
+
x = layers.Activation('relu')(x)
|
155 |
+
return x
|
156 |
+
|
157 |
+
|
158 |
+
def resnet_block(input_tensor,
|
159 |
+
size,
|
160 |
+
kernel_size,
|
161 |
+
filters,
|
162 |
+
stage,
|
163 |
+
conv_strides=(2, 2),
|
164 |
+
training=None):
|
165 |
+
"""A block which applies conv followed by multiple identity blocks.
|
166 |
+
|
167 |
+
Arguments:
|
168 |
+
input_tensor: input tensor
|
169 |
+
size: integer, number of constituent conv/identity building blocks.
|
170 |
+
A conv block is applied once, followed by (size - 1) identity blocks.
|
171 |
+
kernel_size: default 3, the kernel size of
|
172 |
+
middle conv layer at main path
|
173 |
+
filters: list of integers, the filters of 3 conv layer at main path
|
174 |
+
stage: integer, current stage label, used for generating layer names
|
175 |
+
conv_strides: Strides for the first conv layer in the block.
|
176 |
+
training: Only used if training keras model with Estimator. In other
|
177 |
+
scenarios it is handled automatically.
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
Output tensor after applying conv and identity blocks.
|
181 |
+
"""
|
182 |
+
|
183 |
+
x = conv_building_block(input_tensor, kernel_size, filters, stage=stage,
|
184 |
+
strides=conv_strides, block='block_0',
|
185 |
+
training=training)
|
186 |
+
for i in range(size - 1):
|
187 |
+
x = identity_building_block(x, kernel_size, filters, stage=stage,
|
188 |
+
block='block_%d' % (i + 1), training=training)
|
189 |
+
return x
|
190 |
+
|
191 |
+
|
192 |
+
def resnet(num_blocks, classes=10, training=None):
|
193 |
+
"""Instantiates the ResNet architecture.
|
194 |
+
|
195 |
+
Arguments:
|
196 |
+
num_blocks: integer, the number of conv/identity blocks in each block.
|
197 |
+
The ResNet contains 3 blocks with each block containing one conv block
|
198 |
+
followed by (layers_per_block - 1) number of idenity blocks. Each
|
199 |
+
conv/idenity block has 2 convolutional layers. With the input
|
200 |
+
convolutional layer and the pooling layer towards the end, this brings
|
201 |
+
the total size of the network to (6*num_blocks + 2)
|
202 |
+
classes: optional number of classes to classify images into
|
203 |
+
training: Only used if training keras model with Estimator. In other
|
204 |
+
scenarios it is handled automatically.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
A Keras model instance.
|
208 |
+
"""
|
209 |
+
|
210 |
+
input_shape = (32, 32, 3)
|
211 |
+
img_input = layers.Input(shape=input_shape)
|
212 |
+
|
213 |
+
if backend.image_data_format() == 'channels_first':
|
214 |
+
x = layers.Lambda(lambda x: backend.permute_dimensions(x, (0, 3, 1, 2)),
|
215 |
+
name='transpose')(img_input)
|
216 |
+
bn_axis = 1
|
217 |
+
else: # channel_last
|
218 |
+
x = img_input
|
219 |
+
bn_axis = 3
|
220 |
+
|
221 |
+
x = layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(x)
|
222 |
+
x = layers.Conv2D(16, (3, 3),
|
223 |
+
strides=(1, 1),
|
224 |
+
padding='valid', use_bias=False,
|
225 |
+
kernel_initializer='he_normal',
|
226 |
+
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
227 |
+
name='conv1')(x)
|
228 |
+
x = layers.BatchNormalization(axis=bn_axis,
|
229 |
+
momentum=BATCH_NORM_DECAY,
|
230 |
+
epsilon=BATCH_NORM_EPSILON,
|
231 |
+
name='bn_conv1',)(x, training=training)
|
232 |
+
x = layers.Activation('relu')(x)
|
233 |
+
|
234 |
+
x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[16, 16],
|
235 |
+
stage=2, conv_strides=(1, 1), training=training)
|
236 |
+
|
237 |
+
x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[32, 32],
|
238 |
+
stage=3, conv_strides=(2, 2), training=training)
|
239 |
+
|
240 |
+
x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[64, 64],
|
241 |
+
stage=4, conv_strides=(2, 2), training=training)
|
242 |
+
|
243 |
+
rm_axes = [1, 2] if backend.image_data_format() == 'channels_last' else [2, 3]
|
244 |
+
x = layers.Lambda(lambda x: backend.mean(x, rm_axes), name='reduce_mean')(x)
|
245 |
+
x = layers.Dense(classes,
|
246 |
+
activation='softmax',
|
247 |
+
kernel_initializer=initializers.RandomNormal(stddev=0.01),
|
248 |
+
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
249 |
+
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
|
250 |
+
name='fc10')(x)
|
251 |
+
|
252 |
+
inputs = img_input
|
253 |
+
# Create model.
|
254 |
+
model = tf.keras.models.Model(inputs, x, name='resnet56')
|
255 |
+
|
256 |
+
return model
|
257 |
+
|
258 |
+
|
259 |
+
resnet20 = functools.partial(resnet, num_blocks=3)
|
260 |
+
resnet32 = functools.partial(resnet, num_blocks=5)
|
261 |
+
resnet56 = functools.partial(resnet, num_blocks=9)
|
262 |
+
resnet10 = functools.partial(resnet, num_blocks=110)
|
models/official/benchmark/models/resnet_cifar_test.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Test the keras ResNet model with Cifar data."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import tempfile
|
22 |
+
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from tensorflow.python.eager import context
|
26 |
+
from tensorflow.python.platform import googletest
|
27 |
+
from official.benchmark.models import cifar_preprocessing
|
28 |
+
from official.benchmark.models import resnet_cifar_main
|
29 |
+
from official.utils.testing import integration
|
30 |
+
|
31 |
+
|
32 |
+
class KerasCifarTest(googletest.TestCase):
|
33 |
+
"""Unit tests for Keras ResNet with Cifar."""
|
34 |
+
|
35 |
+
_extra_flags = [
|
36 |
+
"-batch_size", "4",
|
37 |
+
"-train_steps", "1",
|
38 |
+
"-use_synthetic_data", "true"
|
39 |
+
]
|
40 |
+
_tempdir = None
|
41 |
+
|
42 |
+
def get_temp_dir(self):
|
43 |
+
if not self._tempdir:
|
44 |
+
self._tempdir = tempfile.mkdtemp(dir=googletest.GetTempDir())
|
45 |
+
return self._tempdir
|
46 |
+
|
47 |
+
@classmethod
|
48 |
+
def setUpClass(cls): # pylint: disable=invalid-name
|
49 |
+
super(KerasCifarTest, cls).setUpClass()
|
50 |
+
resnet_cifar_main.define_cifar_flags()
|
51 |
+
|
52 |
+
def setUp(self):
|
53 |
+
super(KerasCifarTest, self).setUp()
|
54 |
+
cifar_preprocessing.NUM_IMAGES["validation"] = 4
|
55 |
+
|
56 |
+
def tearDown(self):
|
57 |
+
super(KerasCifarTest, self).tearDown()
|
58 |
+
tf.io.gfile.rmtree(self.get_temp_dir())
|
59 |
+
|
60 |
+
def test_end_to_end_no_dist_strat(self):
|
61 |
+
"""Test Keras model with 1 GPU, no distribution strategy."""
|
62 |
+
|
63 |
+
extra_flags = [
|
64 |
+
"-distribution_strategy", "off",
|
65 |
+
"-model_dir", "keras_cifar_no_dist_strat",
|
66 |
+
"-data_format", "channels_last",
|
67 |
+
]
|
68 |
+
extra_flags = extra_flags + self._extra_flags
|
69 |
+
|
70 |
+
integration.run_synthetic(
|
71 |
+
main=resnet_cifar_main.run,
|
72 |
+
tmp_root=self.get_temp_dir(),
|
73 |
+
extra_flags=extra_flags
|
74 |
+
)
|
75 |
+
|
76 |
+
def test_end_to_end_graph_no_dist_strat(self):
|
77 |
+
"""Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
|
78 |
+
extra_flags = [
|
79 |
+
"-enable_eager", "false",
|
80 |
+
"-distribution_strategy", "off",
|
81 |
+
"-model_dir", "keras_cifar_graph_no_dist_strat",
|
82 |
+
"-data_format", "channels_last",
|
83 |
+
]
|
84 |
+
extra_flags = extra_flags + self._extra_flags
|
85 |
+
|
86 |
+
integration.run_synthetic(
|
87 |
+
main=resnet_cifar_main.run,
|
88 |
+
tmp_root=self.get_temp_dir(),
|
89 |
+
extra_flags=extra_flags
|
90 |
+
)
|
91 |
+
|
92 |
+
def test_end_to_end_1_gpu(self):
|
93 |
+
"""Test Keras model with 1 GPU."""
|
94 |
+
|
95 |
+
if context.num_gpus() < 1:
|
96 |
+
self.skipTest(
|
97 |
+
"{} GPUs are not available for this test. {} GPUs are available".
|
98 |
+
format(1, context.num_gpus()))
|
99 |
+
|
100 |
+
extra_flags = [
|
101 |
+
"-num_gpus", "1",
|
102 |
+
"-distribution_strategy", "mirrored",
|
103 |
+
"-model_dir", "keras_cifar_1_gpu",
|
104 |
+
"-data_format", "channels_last",
|
105 |
+
]
|
106 |
+
extra_flags = extra_flags + self._extra_flags
|
107 |
+
|
108 |
+
integration.run_synthetic(
|
109 |
+
main=resnet_cifar_main.run,
|
110 |
+
tmp_root=self.get_temp_dir(),
|
111 |
+
extra_flags=extra_flags
|
112 |
+
)
|
113 |
+
|
114 |
+
def test_end_to_end_graph_1_gpu(self):
|
115 |
+
"""Test Keras model in legacy graph mode with 1 GPU."""
|
116 |
+
if context.num_gpus() < 1:
|
117 |
+
self.skipTest(
|
118 |
+
"{} GPUs are not available for this test. {} GPUs are available".
|
119 |
+
format(1, context.num_gpus()))
|
120 |
+
|
121 |
+
extra_flags = [
|
122 |
+
"-num_gpus", "1",
|
123 |
+
"-noenable_eager",
|
124 |
+
"-distribution_strategy", "mirrored",
|
125 |
+
"-model_dir", "keras_cifar_graph_1_gpu",
|
126 |
+
"-data_format", "channels_last",
|
127 |
+
]
|
128 |
+
extra_flags = extra_flags + self._extra_flags
|
129 |
+
|
130 |
+
integration.run_synthetic(
|
131 |
+
main=resnet_cifar_main.run,
|
132 |
+
tmp_root=self.get_temp_dir(),
|
133 |
+
extra_flags=extra_flags
|
134 |
+
)
|
135 |
+
|
136 |
+
def test_end_to_end_2_gpu(self):
|
137 |
+
"""Test Keras model with 2 GPUs."""
|
138 |
+
|
139 |
+
if context.num_gpus() < 2:
|
140 |
+
self.skipTest(
|
141 |
+
"{} GPUs are not available for this test. {} GPUs are available".
|
142 |
+
format(2, context.num_gpus()))
|
143 |
+
|
144 |
+
extra_flags = [
|
145 |
+
"-num_gpus", "2",
|
146 |
+
"-distribution_strategy", "mirrored",
|
147 |
+
"-model_dir", "keras_cifar_2_gpu",
|
148 |
+
]
|
149 |
+
extra_flags = extra_flags + self._extra_flags
|
150 |
+
|
151 |
+
integration.run_synthetic(
|
152 |
+
main=resnet_cifar_main.run,
|
153 |
+
tmp_root=self.get_temp_dir(),
|
154 |
+
extra_flags=extra_flags
|
155 |
+
)
|
156 |
+
|
157 |
+
def test_end_to_end_graph_2_gpu(self):
|
158 |
+
"""Test Keras model in legacy graph mode with 2 GPUs."""
|
159 |
+
if context.num_gpus() < 2:
|
160 |
+
self.skipTest(
|
161 |
+
"{} GPUs are not available for this test. {} GPUs are available".
|
162 |
+
format(2, context.num_gpus()))
|
163 |
+
|
164 |
+
extra_flags = [
|
165 |
+
"-num_gpus", "2",
|
166 |
+
"-enable_eager", "false",
|
167 |
+
"-distribution_strategy", "mirrored",
|
168 |
+
"-model_dir", "keras_cifar_graph_2_gpu",
|
169 |
+
]
|
170 |
+
extra_flags = extra_flags + self._extra_flags
|
171 |
+
|
172 |
+
integration.run_synthetic(
|
173 |
+
main=resnet_cifar_main.run,
|
174 |
+
tmp_root=self.get_temp_dir(),
|
175 |
+
extra_flags=extra_flags
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
if __name__ == "__main__":
|
180 |
+
googletest.main()
|
models/official/benchmark/models/resnet_imagenet_main.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
"""Runs a ResNet model on the ImageNet dataset."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import division
|
19 |
+
from __future__ import print_function
|
20 |
+
|
21 |
+
import os
|
22 |
+
|
23 |
+
from absl import app
|
24 |
+
from absl import flags
|
25 |
+
from absl import logging
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
import tensorflow_model_optimization as tfmot
|
29 |
+
from official.modeling import performance
|
30 |
+
from official.utils.flags import core as flags_core
|
31 |
+
from official.utils.misc import distribution_utils
|
32 |
+
from official.utils.misc import keras_utils
|
33 |
+
from official.utils.misc import model_helpers
|
34 |
+
from official.vision.image_classification import test_utils
|
35 |
+
from official.vision.image_classification.resnet import common
|
36 |
+
from official.vision.image_classification.resnet import imagenet_preprocessing
|
37 |
+
from official.vision.image_classification.resnet import resnet_model
|
38 |
+
|
39 |
+
|
40 |
+
def run(flags_obj):
|
41 |
+
"""Run ResNet ImageNet training and eval loop using native Keras APIs.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
flags_obj: An object containing parsed flag values.
|
45 |
+
|
46 |
+
Raises:
|
47 |
+
ValueError: If fp16 is passed as it is not currently supported.
|
48 |
+
NotImplementedError: If some features are not currently supported.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
Dictionary of training and eval stats.
|
52 |
+
"""
|
53 |
+
keras_utils.set_session_config(
|
54 |
+
enable_xla=flags_obj.enable_xla)
|
55 |
+
|
56 |
+
# Execute flag override logic for better model performance
|
57 |
+
if flags_obj.tf_gpu_thread_mode:
|
58 |
+
keras_utils.set_gpu_thread_mode_and_count(
|
59 |
+
per_gpu_thread_count=flags_obj.per_gpu_thread_count,
|
60 |
+
gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
|
61 |
+
num_gpus=flags_obj.num_gpus,
|
62 |
+
datasets_num_private_threads=flags_obj.datasets_num_private_threads)
|
63 |
+
common.set_cudnn_batchnorm_mode()
|
64 |
+
|
65 |
+
dtype = flags_core.get_tf_dtype(flags_obj)
|
66 |
+
performance.set_mixed_precision_policy(
|
67 |
+
flags_core.get_tf_dtype(flags_obj),
|
68 |
+
flags_core.get_loss_scale(flags_obj, default_for_fp16=128))
|
69 |
+
|
70 |
+
data_format = flags_obj.data_format
|
71 |
+
if data_format is None:
|
72 |
+
data_format = ('channels_first' if tf.config.list_physical_devices('GPU')
|
73 |
+
else 'channels_last')
|
74 |
+
tf.keras.backend.set_image_data_format(data_format)
|
75 |
+
|
76 |
+
# Configures cluster spec for distribution strategy.
|
77 |
+
_ = distribution_utils.configure_cluster(flags_obj.worker_hosts,
|
78 |
+
flags_obj.task_index)
|
79 |
+
|
80 |
+
strategy = distribution_utils.get_distribution_strategy(
|
81 |
+
distribution_strategy=flags_obj.distribution_strategy,
|
82 |
+
num_gpus=flags_obj.num_gpus,
|
83 |
+
all_reduce_alg=flags_obj.all_reduce_alg,
|
84 |
+
num_packs=flags_obj.num_packs,
|
85 |
+
tpu_address=flags_obj.tpu)
|
86 |
+
|
87 |
+
if strategy:
|
88 |
+
# flags_obj.enable_get_next_as_optional controls whether enabling
|
89 |
+
# get_next_as_optional behavior in DistributedIterator. If true, last
|
90 |
+
# partial batch can be supported.
|
91 |
+
strategy.extended.experimental_enable_get_next_as_optional = (
|
92 |
+
flags_obj.enable_get_next_as_optional
|
93 |
+
)
|
94 |
+
|
95 |
+
strategy_scope = distribution_utils.get_strategy_scope(strategy)
|
96 |
+
|
97 |
+
# pylint: disable=protected-access
|
98 |
+
if flags_obj.use_synthetic_data:
|
99 |
+
input_fn = common.get_synth_input_fn(
|
100 |
+
height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
|
101 |
+
width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
|
102 |
+
num_channels=imagenet_preprocessing.NUM_CHANNELS,
|
103 |
+
num_classes=imagenet_preprocessing.NUM_CLASSES,
|
104 |
+
dtype=dtype,
|
105 |
+
drop_remainder=True)
|
106 |
+
else:
|
107 |
+
input_fn = imagenet_preprocessing.input_fn
|
108 |
+
|
109 |
+
# When `enable_xla` is True, we always drop the remainder of the batches
|
110 |
+
# in the dataset, as XLA-GPU doesn't support dynamic shapes.
|
111 |
+
drop_remainder = flags_obj.enable_xla
|
112 |
+
|
113 |
+
# Current resnet_model.resnet50 input format is always channel-last.
|
114 |
+
# We use keras_application mobilenet model which input format is depends on
|
115 |
+
# the keras beckend image data format.
|
116 |
+
# This use_keras_image_data_format flags indicates whether image preprocessor
|
117 |
+
# output format should be same as the keras backend image data format or just
|
118 |
+
# channel-last format.
|
119 |
+
use_keras_image_data_format = (flags_obj.model == 'mobilenet')
|
120 |
+
train_input_dataset = input_fn(
|
121 |
+
is_training=True,
|
122 |
+
data_dir=flags_obj.data_dir,
|
123 |
+
batch_size=flags_obj.batch_size,
|
124 |
+
parse_record_fn=imagenet_preprocessing.get_parse_record_fn(
|
125 |
+
use_keras_image_data_format=use_keras_image_data_format),
|
126 |
+
datasets_num_private_threads=flags_obj.datasets_num_private_threads,
|
127 |
+
dtype=dtype,
|
128 |
+
drop_remainder=drop_remainder,
|
129 |
+
tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
|
130 |
+
training_dataset_cache=flags_obj.training_dataset_cache,
|
131 |
+
)
|
132 |
+
|
133 |
+
eval_input_dataset = None
|
134 |
+
if not flags_obj.skip_eval:
|
135 |
+
eval_input_dataset = input_fn(
|
136 |
+
is_training=False,
|
137 |
+
data_dir=flags_obj.data_dir,
|
138 |
+
batch_size=flags_obj.batch_size,
|
139 |
+
parse_record_fn=imagenet_preprocessing.get_parse_record_fn(
|
140 |
+
use_keras_image_data_format=use_keras_image_data_format),
|
141 |
+
dtype=dtype,
|
142 |
+
drop_remainder=drop_remainder)
|
143 |
+
|
144 |
+
lr_schedule = common.PiecewiseConstantDecayWithWarmup(
|
145 |
+
batch_size=flags_obj.batch_size,
|
146 |
+
epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
|
147 |
+
warmup_epochs=common.LR_SCHEDULE[0][1],
|
148 |
+
boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
|
149 |
+
multipliers=list(p[0] for p in common.LR_SCHEDULE),
|
150 |
+
compute_lr_on_cpu=True)
|
151 |
+
steps_per_epoch = (
|
152 |
+
imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
|
153 |
+
|
154 |
+
with strategy_scope:
|
155 |
+
if flags_obj.optimizer == 'resnet50_default':
|
156 |
+
optimizer = common.get_optimizer(lr_schedule)
|
157 |
+
elif flags_obj.optimizer == 'mobilenet_default':
|
158 |
+
initial_learning_rate = \
|
159 |
+
flags_obj.initial_learning_rate_per_sample * flags_obj.batch_size
|
160 |
+
optimizer = tf.keras.optimizers.SGD(
|
161 |
+
learning_rate=tf.keras.optimizers.schedules.ExponentialDecay(
|
162 |
+
initial_learning_rate,
|
163 |
+
decay_steps=steps_per_epoch * flags_obj.num_epochs_per_decay,
|
164 |
+
decay_rate=flags_obj.lr_decay_factor,
|
165 |
+
staircase=True),
|
166 |
+
momentum=0.9)
|
167 |
+
if flags_obj.fp16_implementation == 'graph_rewrite':
|
168 |
+
# Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
|
169 |
+
# determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
|
170 |
+
# which will ensure tf.compat.v2.keras.mixed_precision and
|
171 |
+
# tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
|
172 |
+
# up.
|
173 |
+
optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
|
174 |
+
optimizer)
|
175 |
+
|
176 |
+
# TODO(hongkuny): Remove trivial model usage and move it to benchmark.
|
177 |
+
if flags_obj.use_trivial_model:
|
178 |
+
model = test_utils.trivial_model(imagenet_preprocessing.NUM_CLASSES)
|
179 |
+
elif flags_obj.model == 'resnet50_v1.5':
|
180 |
+
model = resnet_model.resnet50(
|
181 |
+
num_classes=imagenet_preprocessing.NUM_CLASSES)
|
182 |
+
elif flags_obj.model == 'mobilenet':
|
183 |
+
# TODO(kimjaehong): Remove layers attribute when minimum TF version
|
184 |
+
# support 2.0 layers by default.
|
185 |
+
model = tf.keras.applications.mobilenet.MobileNet(
|
186 |
+
weights=None,
|
187 |
+
classes=imagenet_preprocessing.NUM_CLASSES,
|
188 |
+
layers=tf.keras.layers)
|
189 |
+
if flags_obj.pretrained_filepath:
|
190 |
+
model.load_weights(flags_obj.pretrained_filepath)
|
191 |
+
|
192 |
+
if flags_obj.pruning_method == 'polynomial_decay':
|
193 |
+
if dtype != tf.float32:
|
194 |
+
raise NotImplementedError(
|
195 |
+
'Pruning is currently only supported on dtype=tf.float32.')
|
196 |
+
pruning_params = {
|
197 |
+
'pruning_schedule':
|
198 |
+
tfmot.sparsity.keras.PolynomialDecay(
|
199 |
+
initial_sparsity=flags_obj.pruning_initial_sparsity,
|
200 |
+
final_sparsity=flags_obj.pruning_final_sparsity,
|
201 |
+
begin_step=flags_obj.pruning_begin_step,
|
202 |
+
end_step=flags_obj.pruning_end_step,
|
203 |
+
frequency=flags_obj.pruning_frequency),
|
204 |
+
}
|
205 |
+
model = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params)
|
206 |
+
elif flags_obj.pruning_method:
|
207 |
+
raise NotImplementedError(
|
208 |
+
'Only polynomial_decay is currently supported.')
|
209 |
+
|
210 |
+
model.compile(
|
211 |
+
loss='sparse_categorical_crossentropy',
|
212 |
+
optimizer=optimizer,
|
213 |
+
metrics=(['sparse_categorical_accuracy']
|
214 |
+
if flags_obj.report_accuracy_metrics else None),
|
215 |
+
run_eagerly=flags_obj.run_eagerly)
|
216 |
+
|
217 |
+
train_epochs = flags_obj.train_epochs
|
218 |
+
|
219 |
+
callbacks = common.get_callbacks(
|
220 |
+
pruning_method=flags_obj.pruning_method,
|
221 |
+
enable_checkpoint_and_export=flags_obj.enable_checkpoint_and_export,
|
222 |
+
model_dir=flags_obj.model_dir)
|
223 |
+
|
224 |
+
# if mutliple epochs, ignore the train_steps flag.
|
225 |
+
if train_epochs <= 1 and flags_obj.train_steps:
|
226 |
+
steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
|
227 |
+
train_epochs = 1
|
228 |
+
|
229 |
+
num_eval_steps = (
|
230 |
+
imagenet_preprocessing.NUM_IMAGES['validation'] // flags_obj.batch_size)
|
231 |
+
|
232 |
+
validation_data = eval_input_dataset
|
233 |
+
if flags_obj.skip_eval:
|
234 |
+
# Only build the training graph. This reduces memory usage introduced by
|
235 |
+
# control flow ops in layers that have different implementations for
|
236 |
+
# training and inference (e.g., batch norm).
|
237 |
+
if flags_obj.set_learning_phase_to_train:
|
238 |
+
# TODO(haoyuzhang): Understand slowdown of setting learning phase when
|
239 |
+
# not using distribution strategy.
|
240 |
+
tf.keras.backend.set_learning_phase(1)
|
241 |
+
num_eval_steps = None
|
242 |
+
validation_data = None
|
243 |
+
|
244 |
+
if not strategy and flags_obj.explicit_gpu_placement:
|
245 |
+
# TODO(b/135607227): Add device scope automatically in Keras training loop
|
246 |
+
# when not using distribition strategy.
|
247 |
+
no_dist_strat_device = tf.device('/device:GPU:0')
|
248 |
+
no_dist_strat_device.__enter__()
|
249 |
+
|
250 |
+
history = model.fit(train_input_dataset,
|
251 |
+
epochs=train_epochs,
|
252 |
+
steps_per_epoch=steps_per_epoch,
|
253 |
+
callbacks=callbacks,
|
254 |
+
validation_steps=num_eval_steps,
|
255 |
+
validation_data=validation_data,
|
256 |
+
validation_freq=flags_obj.epochs_between_evals,
|
257 |
+
verbose=2)
|
258 |
+
|
259 |
+
eval_output = None
|
260 |
+
if not flags_obj.skip_eval:
|
261 |
+
eval_output = model.evaluate(eval_input_dataset,
|
262 |
+
steps=num_eval_steps,
|
263 |
+
verbose=2)
|
264 |
+
|
265 |
+
if flags_obj.pruning_method:
|
266 |
+
model = tfmot.sparsity.keras.strip_pruning(model)
|
267 |
+
if flags_obj.enable_checkpoint_and_export:
|
268 |
+
if dtype == tf.bfloat16:
|
269 |
+
logging.warning('Keras model.save does not support bfloat16 dtype.')
|
270 |
+
else:
|
271 |
+
# Keras model.save assumes a float32 input designature.
|
272 |
+
export_path = os.path.join(flags_obj.model_dir, 'saved_model')
|
273 |
+
model.save(export_path, include_optimizer=False)
|
274 |
+
|
275 |
+
if not strategy and flags_obj.explicit_gpu_placement:
|
276 |
+
no_dist_strat_device.__exit__()
|
277 |
+
|
278 |
+
stats = common.build_stats(history, eval_output, callbacks)
|
279 |
+
return stats
|
280 |
+
|
281 |
+
|
282 |
+
def define_imagenet_keras_flags():
|
283 |
+
common.define_keras_flags(
|
284 |
+
model=True,
|
285 |
+
optimizer=True,
|
286 |
+
pretrained_filepath=True)
|
287 |
+
common.define_pruning_flags()
|
288 |
+
flags_core.set_defaults()
|
289 |
+
flags.adopt_module_key_flags(common)
|
290 |
+
|
291 |
+
|
292 |
+
def main(_):
|
293 |
+
model_helpers.apply_clean(flags.FLAGS)
|
294 |
+
stats = run(flags.FLAGS)
|
295 |
+
logging.info('Run stats:\n%s', stats)
|
296 |
+
|
297 |
+
|
298 |
+
if __name__ == '__main__':
|
299 |
+
logging.set_verbosity(logging.INFO)
|
300 |
+
define_imagenet_keras_flags()
|
301 |
+
app.run(main)
|