# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates vocabulary and term frequency files for datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six import iteritems from collections import defaultdict # Dependency imports import tensorflow as tf from data import data_utils from data import document_generators flags = tf.app.flags FLAGS = flags.FLAGS # Flags controlling input are in document_generators.py flags.DEFINE_string('output_dir', '', 'Path to save vocab.txt and vocab_freq.txt.') flags.DEFINE_boolean('use_unlabeled', True, 'Whether to use the ' 'unlabeled sentiment dataset in the vocabulary.') flags.DEFINE_boolean('include_validation', False, 'Whether to include the ' 'validation set in the vocabulary.') flags.DEFINE_integer('doc_count_threshold', 1, 'The minimum number of ' 'documents a word or bigram should occur in to keep ' 'it in the vocabulary.') MAX_VOCAB_SIZE = 100 * 1000 def fill_vocab_from_doc(doc, vocab_freqs, doc_counts): """Fills vocabulary and doc counts with tokens from doc. Args: doc: Document to read tokens from. vocab_freqs: dict doc_counts: dict Returns: None """ doc_seen = set() for token in document_generators.tokens(doc): if doc.add_tokens or token in vocab_freqs: vocab_freqs[token] += 1 if token not in doc_seen: doc_counts[token] += 1 doc_seen.add(token) def main(_): tf.logging.set_verbosity(tf.logging.INFO) vocab_freqs = defaultdict(int) doc_counts = defaultdict(int) # Fill vocabulary frequencies map and document counts map for doc in document_generators.documents( dataset='train', include_unlabeled=FLAGS.use_unlabeled, include_validation=FLAGS.include_validation): fill_vocab_from_doc(doc, vocab_freqs, doc_counts) # Filter out low-occurring terms vocab_freqs = dict((term, freq) for term, freq in iteritems(vocab_freqs) if doc_counts[term] > FLAGS.doc_count_threshold) # Sort by frequency ordered_vocab_freqs = data_utils.sort_vocab_by_frequency(vocab_freqs) # Limit vocab size ordered_vocab_freqs = ordered_vocab_freqs[:MAX_VOCAB_SIZE] # Add EOS token ordered_vocab_freqs.append((data_utils.EOS_TOKEN, 1)) # Write tf.gfile.MakeDirs(FLAGS.output_dir) data_utils.write_vocab_and_frequency(ordered_vocab_freqs, FLAGS.output_dir) if __name__ == '__main__': tf.app.run()