# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts ADE20K data to TFRecord file format with Example protos.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import random import sys import build_data from six.moves import range import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string( 'train_image_folder', './ADE20K/ADEChallengeData2016/images/training', 'Folder containing trainng images') tf.app.flags.DEFINE_string( 'train_image_label_folder', './ADE20K/ADEChallengeData2016/annotations/training', 'Folder containing annotations for trainng images') tf.app.flags.DEFINE_string( 'val_image_folder', './ADE20K/ADEChallengeData2016/images/validation', 'Folder containing validation images') tf.app.flags.DEFINE_string( 'val_image_label_folder', './ADE20K/ADEChallengeData2016/annotations/validation', 'Folder containing annotations for validation') tf.app.flags.DEFINE_string( 'output_dir', './ADE20K/tfrecord', 'Path to save converted tfrecord of Tensorflow example') _NUM_SHARDS = 4 def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir): """Converts the ADE20k dataset into into tfrecord format. Args: dataset_split: Dataset split (e.g., train, val). dataset_dir: Dir in which the dataset locates. dataset_label_dir: Dir in which the annotations locates. Raises: RuntimeError: If loaded image and label have different shape. """ img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg')) random.shuffle(img_names) seg_names = [] for f in img_names: # get the filename without the extension basename = os.path.basename(f).split('.')[0] # cover its corresponding *_seg.png seg = os.path.join(dataset_label_dir, basename+'.png') seg_names.append(seg) num_images = len(img_names) num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) image_reader = build_data.ImageReader('jpeg', channels=3) label_reader = build_data.ImageReader('png', channels=1) for shard_id in range(_NUM_SHARDS): output_filename = os.path.join( FLAGS.output_dir, '%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS)) with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: start_idx = shard_id * num_per_shard end_idx = min((shard_id + 1) * num_per_shard, num_images) for i in range(start_idx, end_idx): sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( i + 1, num_images, shard_id)) sys.stdout.flush() # Read the image. image_filename = img_names[i] image_data = tf.gfile.FastGFile(image_filename, 'rb').read() height, width = image_reader.read_image_dims(image_data) # Read the semantic segmentation annotation. seg_filename = seg_names[i] seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read() seg_height, seg_width = label_reader.read_image_dims(seg_data) if height != seg_height or width != seg_width: raise RuntimeError('Shape mismatched between image and label.') # Convert to tf example. example = build_data.image_seg_to_tfexample( image_data, img_names[i], height, width, seg_data) tfrecord_writer.write(example.SerializeToString()) sys.stdout.write('\n') sys.stdout.flush() def main(unused_argv): tf.gfile.MakeDirs(FLAGS.output_dir) _convert_dataset( 'train', FLAGS.train_image_folder, FLAGS.train_image_label_folder) _convert_dataset('val', FLAGS.val_image_folder, FLAGS.val_image_label_folder) if __name__ == '__main__': tf.app.run()