# Copyright 2017 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A trainable optimizer that learns a learning rate schedule.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from learned_optimizer.optimizer import trainable_optimizer class LearningRateSchedule(trainable_optimizer.TrainableOptimizer): """Learns a learning rate schedule over a fixed number of iterations.""" def __init__(self, initial_rate=0.0, n_steps=1000, **kwargs): """Initializes the learning rates.""" self.max_index = tf.constant(n_steps-1, dtype=tf.int32) with tf.variable_scope(trainable_optimizer.OPTIMIZER_SCOPE): initializer = tf.constant_initializer(initial_rate) self.learning_rates = tf.get_variable("learning_rates", shape=([n_steps,]), initializer=initializer) super(LearningRateSchedule, self).__init__("LRS", ["itr"], **kwargs) def _initialize_state(self, var): """Return a dictionary mapping names of state variables to their values.""" return { "itr": tf.constant(0, dtype=tf.int32), } def _compute_update(self, param, grad, state): """Compute updates of parameters.""" # get the learning rate at the current index, if the index # is greater than the number of available learning rates, # use the last one index = tf.minimum(state["itr"], self.max_index) learning_rate = tf.gather(self.learning_rates, index) # update the parameters: parameter - learning_rate * gradient updated_param = param - tf.scalar_mul(learning_rate, grad) return updated_param, {"itr": state["itr"] + 1}