# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Eval Cross Convolutional Model.""" import io import os import sys import time import numpy as np from six.moves import xrange import tensorflow as tf import model as cross_conv_model import reader FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('log_root', '/tmp/moving_obj', 'The root dir of output.') tf.flags.DEFINE_string('data_filepattern', 'est', 'training data file pattern.') tf.flags.DEFINE_integer('batch_size', 1, 'Batch size.') tf.flags.DEFINE_integer('image_size', 64, 'Image height and width.') tf.flags.DEFINE_float('norm_scale', 1.0, 'Normalize the original image') tf.flags.DEFINE_float('scale', 10.0, 'Scale the image after norm_scale and move the diff ' 'to the positive realm.') tf.flags.DEFINE_integer('sequence_length', 2, 'tf.SequenceExample length.') tf.flags.DEFINE_integer('eval_batch_count', 100, 'Average the result this number of examples.') tf.flags.DEFINE_bool('l2_loss', True, 'If true, include l2_loss.') tf.flags.DEFINE_bool('reconstr_loss', False, 'If true, include reconstr_loss.') tf.flags.DEFINE_bool('kl_loss', True, 'If true, include KL loss.') slim = tf.contrib.slim def _Eval(): params = dict() params['batch_size'] = FLAGS.batch_size params['seq_len'] = FLAGS.sequence_length params['image_size'] = FLAGS.image_size params['is_training'] = False params['norm_scale'] = FLAGS.norm_scale params['scale'] = FLAGS.scale params['l2_loss'] = FLAGS.l2_loss params['reconstr_loss'] = FLAGS.reconstr_loss params['kl_loss'] = FLAGS.kl_loss eval_dir = os.path.join(FLAGS.log_root, 'eval') images = reader.ReadInput( FLAGS.data_filepattern, shuffle=False, params=params) images *= params['scale'] # Increase the value makes training much faster. image_diff_list = reader.SequenceToImageAndDiff(images) model = cross_conv_model.CrossConvModel(image_diff_list, params) model.Build() summary_writer = tf.summary.FileWriter(eval_dir) saver = tf.train.Saver() sess = tf.Session('', config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) while True: time.sleep(60) try: ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) except tf.errors.OutOfRangeError as e: sys.stderr.write('Cannot restore checkpoint: %s\n' % e) continue if not (ckpt_state and ckpt_state.model_checkpoint_path): sys.stderr.write('No model to eval yet at %s\n' % FLAGS.log_root) continue sys.stderr.write('Loading checkpoint %s\n' % ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) # Use the empirical distribution of z from training set. if not tf.gfile.Exists(os.path.join(FLAGS.log_root, 'z_mean.npy')): sys.stderr.write('No z at %s\n' % FLAGS.log_root) continue with tf.gfile.Open(os.path.join(FLAGS.log_root, 'z_mean.npy')) as f: sample_z_mean = np.load(io.BytesIO(f.read())) with tf.gfile.Open( os.path.join(FLAGS.log_root, 'z_stddev_log.npy')) as f: sample_z_stddev_log = np.load(io.BytesIO(f.read())) total_loss = 0.0 for _ in xrange(FLAGS.eval_batch_count): loss_val, total_steps, summaries = sess.run( [model.loss, model.global_step, model.summary_op], feed_dict={model.z_mean: sample_z_mean, model.z_stddev_log: sample_z_stddev_log}) total_loss += loss_val summary_writer.add_summary(summaries, total_steps) sys.stderr.write('steps: %d, loss: %f\n' % (total_steps, total_loss / FLAGS.eval_batch_count)) def main(_): _Eval() if __name__ == '__main__': tf.app.run()