# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Train the cross convolutional model.""" import os import sys import numpy as np import tensorflow as tf import model as cross_conv_model import reader FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('master', '', 'Session address.') tf.flags.DEFINE_string('log_root', '/tmp/moving_obj', 'The root dir of output.') tf.flags.DEFINE_string('data_filepattern', '', 'training data file pattern.') tf.flags.DEFINE_integer('image_size', 64, 'Image height and width.') tf.flags.DEFINE_integer('batch_size', 1, 'Batch size.') tf.flags.DEFINE_float('norm_scale', 1.0, 'Normalize the original image') tf.flags.DEFINE_float('scale', 10.0, 'Scale the image after norm_scale and move the diff ' 'to the positive realm.') tf.flags.DEFINE_integer('sequence_length', 2, 'tf.SequenceExample length.') tf.flags.DEFINE_float('learning_rate', 0.8, 'Learning rate.') tf.flags.DEFINE_bool('l2_loss', True, 'If true, include l2_loss.') tf.flags.DEFINE_bool('reconstr_loss', False, 'If true, include reconstr_loss.') tf.flags.DEFINE_bool('kl_loss', True, 'If true, include KL loss.') slim = tf.contrib.slim def _Train(): params = dict() params['batch_size'] = FLAGS.batch_size params['seq_len'] = FLAGS.sequence_length params['image_size'] = FLAGS.image_size params['is_training'] = True params['norm_scale'] = FLAGS.norm_scale params['scale'] = FLAGS.scale params['learning_rate'] = FLAGS.learning_rate params['l2_loss'] = FLAGS.l2_loss params['reconstr_loss'] = FLAGS.reconstr_loss params['kl_loss'] = FLAGS.kl_loss train_dir = os.path.join(FLAGS.log_root, 'train') images = reader.ReadInput(FLAGS.data_filepattern, shuffle=True, params=params) images *= params['scale'] # Increase the value makes training much faster. image_diff_list = reader.SequenceToImageAndDiff(images) model = cross_conv_model.CrossConvModel(image_diff_list, params) model.Build() tf.contrib.tfprof.model_analyzer.print_model_analysis(tf.get_default_graph()) summary_writer = tf.summary.FileWriter(train_dir) sv = tf.train.Supervisor(logdir=FLAGS.log_root, summary_op=None, is_chief=True, save_model_secs=60, global_step=model.global_step) sess = sv.prepare_or_wait_for_session( FLAGS.master, config=tf.ConfigProto(allow_soft_placement=True)) total_loss = 0.0 step = 0 sample_z_mean = np.zeros(model.z_mean.get_shape().as_list()) sample_z_stddev_log = np.zeros(model.z_stddev_log.get_shape().as_list()) sample_step = 0 while True: _, loss_val, total_steps, summaries, z_mean, z_stddev_log = sess.run( [model.train_op, model.loss, model.global_step, model.summary_op, model.z_mean, model.z_stddev_log]) sample_z_mean += z_mean sample_z_stddev_log += z_stddev_log total_loss += loss_val step += 1 sample_step += 1 if step % 100 == 0: summary_writer.add_summary(summaries, total_steps) sys.stderr.write('step: %d, loss: %f\n' % (total_steps, total_loss / step)) total_loss = 0.0 step = 0 # Sampled z is used for eval. # It seems 10k is better than 1k. Maybe try 100k next? if sample_step % 10000 == 0: with tf.gfile.Open(os.path.join(FLAGS.log_root, 'z_mean.npy'), 'w') as f: np.save(f, sample_z_mean / sample_step) with tf.gfile.Open( os.path.join(FLAGS.log_root, 'z_stddev_log.npy'), 'w') as f: np.save(f, sample_z_stddev_log / sample_step) sample_z_mean = np.zeros(model.z_mean.get_shape().as_list()) sample_z_stddev_log = np.zeros( model.z_stddev_log.get_shape().as_list()) sample_step = 0 def main(_): _Train() if __name__ == '__main__': tf.app.run()