# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #========================================================================== # Pull TF nightly-devel docker image FROM tensorflow/tensorflow:nightly-devel # Get the tensorflow models research directory, and move it into tensorflow # source folder to match recommendation of installation RUN git clone --depth 1 https://github.com/tensorflow/models.git && \ mv models /tensorflow/models # Install gcloud and gsutil commands # https://cloud.google.com/sdk/docs/quickstart-debian-ubuntu RUN apt-get -y update && apt-get install -y gpg-agent && \ export CLOUD_SDK_REPO="cloud-sdk-$(lsb_release -c -s)" && \ echo "deb http://packages.cloud.google.com/apt $CLOUD_SDK_REPO main" | tee -a /etc/apt/sources.list.d/google-cloud-sdk.list && \ curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - && \ apt-get update -y && apt-get install google-cloud-sdk -y # Install the Tensorflow Object Detection API from here # https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md # Install object detection api dependencies - use non-interactive mode to set # default tzdata config during installation. RUN export DEBIAN_FRONTEND=noninteractive && \ apt-get install -y protobuf-compiler python-pil python-lxml python-tk && \ pip install Cython && \ pip install contextlib2 && \ pip install jupyter && \ pip install matplotlib # Install pycocoapi RUN git clone --depth 1 https://github.com/cocodataset/cocoapi.git && \ cd cocoapi/PythonAPI && \ make -j8 && \ cp -r pycocotools /tensorflow/models/research && \ cd ../../ && \ rm -rf cocoapi # Get protoc 3.0.0, rather than the old version already in the container RUN curl -OL "https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip" && \ unzip protoc-3.0.0-linux-x86_64.zip -d proto3 && \ mv proto3/bin/* /usr/local/bin && \ mv proto3/include/* /usr/local/include && \ rm -rf proto3 protoc-3.0.0-linux-x86_64.zip # Run protoc on the object detection repo RUN cd /tensorflow/models/research && \ protoc object_detection/protos/*.proto --python_out=. # Set the PYTHONPATH to finish installing the API ENV PYTHONPATH $PYTHONPATH:/tensorflow/models/research:/tensorflow/models/research/slim # Install wget (to make life easier below) and editors (to allow people to edit # the files inside the container) RUN apt-get install -y wget vim emacs nano # Grab various data files which are used throughout the demo: dataset, # pretrained model, and pretrained TensorFlow Lite model. Install these all in # the same directories as recommended by the blog post. # Pets example dataset RUN mkdir -p /tmp/pet_faces_tfrecord/ && \ cd /tmp/pet_faces_tfrecord && \ curl "http://download.tensorflow.org/models/object_detection/pet_faces_tfrecord.tar.gz" | tar xzf - # Pretrained model # This one doesn't need its own directory, since it comes in a folder. RUN cd /tmp && \ curl -O "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz" && \ tar xzf ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz && \ rm ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz # Trained TensorFlow Lite model. This should get replaced by one generated from # export_tflite_ssd_graph.py when that command is called. RUN cd /tmp && \ curl -L -o tflite.zip \ https://storage.googleapis.com/download.tensorflow.org/models/tflite/frozengraphs_ssd_mobilenet_v1_0.75_quant_pets_2018_06_29.zip && \ unzip tflite.zip -d tflite && \ rm tflite.zip # Install Android development tools # Inspired by the following sources: # https://github.com/bitrise-docker/android/blob/master/Dockerfile # https://github.com/reddit/docker-android-build/blob/master/Dockerfile # Set environment variables ENV ANDROID_HOME /opt/android-sdk-linux ENV ANDROID_NDK_HOME /opt/android-ndk-r14b ENV PATH ${PATH}:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools # Install SDK tools RUN cd /opt && \ curl -OL https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip && \ unzip sdk-tools-linux-4333796.zip -d ${ANDROID_HOME} && \ rm sdk-tools-linux-4333796.zip # Accept licenses before installing components, no need to echo y for each component # License is valid for all the standard components in versions installed from this file # Non-standard components: MIPS system images, preview versions, GDK (Google Glass) and Android Google TV require separate licenses, not accepted there RUN yes | sdkmanager --licenses # Install platform tools, SDK platform, and other build tools RUN yes | sdkmanager \ "tools" \ "platform-tools" \ "platforms;android-27" \ "platforms;android-23" \ "build-tools;27.0.3" \ "build-tools;23.0.3" # Install Android NDK (r14b) RUN cd /opt && \ curl -L -o android-ndk.zip http://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \ unzip -q android-ndk.zip && \ rm -f android-ndk.zip # Configure the build to use the things we just downloaded RUN cd /tensorflow && \ printf '\n\n\nn\ny\nn\nn\nn\ny\nn\nn\nn\nn\nn\nn\n\ny\n%s\n\n\n' ${ANDROID_HOME}|./configure WORKDIR /tensorflow