# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.tflearn.inputs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import unittest from absl import logging from absl.testing import parameterized import numpy as np import six import tensorflow.compat.v1 as tf from object_detection import inputs from object_detection.core import preprocessor from object_detection.core import standard_fields as fields from object_detection.utils import config_util from object_detection.utils import test_case from object_detection.utils import test_utils from object_detection.utils import tf_version if six.PY2: import mock # pylint: disable=g-import-not-at-top else: from unittest import mock # pylint: disable=g-import-not-at-top, g-importing-member FLAGS = tf.flags.FLAGS def _get_configs_for_model(model_name): """Returns configurations for model.""" fname = os.path.join(tf.resource_loader.get_data_files_path(), 'samples/configs/' + model_name + '.config') label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), 'data/pet_label_map.pbtxt') data_path = os.path.join(tf.resource_loader.get_data_files_path(), 'test_data/pets_examples.record') configs = config_util.get_configs_from_pipeline_file(fname) override_dict = { 'train_input_path': data_path, 'eval_input_path': data_path, 'label_map_path': label_map_path } return config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) def _get_configs_for_model_sequence_example(model_name): """Returns configurations for model.""" fname = os.path.join(tf.resource_loader.get_data_files_path(), 'test_data/' + model_name + '.config') label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), 'data/snapshot_serengeti_label_map.pbtxt') data_path = os.path.join( tf.resource_loader.get_data_files_path(), 'test_data/snapshot_serengeti_sequence_examples.record') configs = config_util.get_configs_from_pipeline_file(fname) override_dict = { 'train_input_path': data_path, 'eval_input_path': data_path, 'label_map_path': label_map_path } return config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) def _make_initializable_iterator(dataset): """Creates an iterator, and initializes tables. Args: dataset: A `tf.data.Dataset` object. Returns: A `tf.data.Iterator`. """ iterator = tf.data.make_initializable_iterator(dataset) tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) return iterator @unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only tests under TF2.X.') class InputFnTest(test_case.TestCase, parameterized.TestCase): def test_faster_rcnn_resnet50_train_input(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([1, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) def test_faster_rcnn_resnet50_train_input_with_additional_channels(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] configs['train_input_config'].num_additional_channels = 2 configs['train_config'].retain_original_images = True model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([1, None, None, 5], features[fields.InputDataFields.image].shape.as_list()) self.assertAllEqual( [1, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) @parameterized.parameters( {'eval_batch_size': 1}, {'eval_batch_size': 8} ) def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_context_rcnn_resnet50_train_input_with_sequence_example( self, train_batch_size=8): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model_sequence_example( 'context_rcnn_camera_trap') model_config = configs['model'] train_config = configs['train_config'] train_config.batch_size = train_batch_size train_input_fn = inputs.create_train_input_fn( train_config, configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([train_batch_size, 640, 640, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([train_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [train_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [train_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [train_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [train_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) def test_context_rcnn_resnet50_eval_input_with_sequence_example( self, eval_batch_size=8): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model_sequence_example( 'context_rcnn_camera_trap') model_config = configs['model'] eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 640, 640, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 640, 640, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) def test_ssd_inceptionV2_train_input(self): """Tests the training input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 batch_size = configs['train_config'].batch_size train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [batch_size], labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.num_groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [batch_size, 100], labels[ fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) @parameterized.parameters( {'eval_batch_size': 1}, {'eval_batch_size': 8} ) def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1): """Tests the eval input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 300, 300, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[ fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_ssd_inceptionV2_eval_input_with_additional_channels( self, eval_batch_size=1): """Tests the eval input function for SSDInceptionV2 with additional channel. Args: eval_batch_size: Batch size for eval set. """ configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 configs['eval_input_configs'][0].num_additional_channels = 1 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_config.retain_original_image_additional_channels = True eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 300, 300, 4], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 300, 300, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size, 300, 300, 1], features[ fields.InputDataFields.image_additional_channels].shape.as_list()) self.assertEqual( tf.uint8, features[fields.InputDataFields.image_additional_channels].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual(tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_predict_input(self): """Tests the predict input function.""" configs = _get_configs_for_model('ssd_inception_v2_pets') predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model'], predict_input_config=configs['eval_input_configs'][0]) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] self.assertEqual([1, 300, 300, 3], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_predict_input_with_additional_channels(self): """Tests the predict input function with additional channels.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['eval_input_configs'][0].num_additional_channels = 2 predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model'], predict_input_config=configs['eval_input_configs'][0]) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] # RGB + 2 additional channels = 5 channels. self.assertEqual([1, 300, 300, 5], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_error_with_bad_train_config(self): """Tests that a TypeError is raised with improper train config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['eval_config'], # Expecting `TrainConfig`. train_input_config=configs['train_input_config'], model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_input_config(self): """Tests that a TypeError is raised with improper train input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_model_config(self): """Tests that a TypeError is raised with improper train model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['train_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_eval_config(self): """Tests that a TypeError is raised with improper eval config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['train_config'], # Expecting `EvalConfig`. eval_input_config=configs['eval_input_configs'][0], model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_input_config(self): """Tests that a TypeError is raised with improper eval input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_model_config(self): """Tests that a TypeError is raised with improper eval model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_configs'][0], model_config=configs['eval_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): eval_input_fn() def test_output_equal_in_replace_empty_string_with_random_number(self): string_placeholder = tf.placeholder(tf.string, shape=[]) replaced_string = inputs._replace_empty_string_with_random_number( string_placeholder) test_string = b'hello world' feed_dict = {string_placeholder: test_string} with self.test_session() as sess: out_string = sess.run(replaced_string, feed_dict=feed_dict) self.assertEqual(test_string, out_string) def test_output_is_integer_in_replace_empty_string_with_random_number(self): string_placeholder = tf.placeholder(tf.string, shape=[]) replaced_string = inputs._replace_empty_string_with_random_number( string_placeholder) empty_string = '' feed_dict = {string_placeholder: empty_string} with self.test_session() as sess: out_string = sess.run(replaced_string, feed_dict=feed_dict) is_integer = True try: # Test whether out_string is a string which represents an integer, the # casting below will throw an error if out_string is not castable to int. int(out_string) except ValueError: is_integer = False self.assertTrue(is_integer) def test_force_no_resize(self): """Tests the functionality of force_no_reisze option.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['eval_config'].force_no_resize = True eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_configs'][0], model_config=configs['model'] ) train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['model'] ) features_train, _ = _make_initializable_iterator( train_input_fn()).get_next() features_eval, _ = _make_initializable_iterator( eval_input_fn()).get_next() images_train, images_eval = features_train['image'], features_eval['image'] self.assertEqual([1, None, None, 3], images_eval.shape.as_list()) self.assertEqual([24, 300, 300, 3], images_train.shape.as_list()) class DataAugmentationFnTest(test_case.TestCase): def test_apply_image_and_box_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields. groundtruth_boxes]) image, groundtruth_boxes = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]]) def test_apply_image_and_box_augmentation_with_scores(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1.0], np.float32)), fields.InputDataFields.groundtruth_weights: tf.constant(np.array([0.8], np.float32)), } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes], augmented_tensor_dict[fields.InputDataFields.groundtruth_classes], augmented_tensor_dict[fields.InputDataFields.groundtruth_weights]) (image, groundtruth_boxes, groundtruth_classes, groundtruth_weights) = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]]) self.assertAllClose(groundtruth_classes.shape, [1.0]) self.assertAllClose(groundtruth_weights, [0.8]) def test_include_masks_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }) ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.zeros([2, 10, 10], np.uint8)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields. groundtruth_instance_masks]) image, masks = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllEqual(masks.shape, [2, 20, 20]) def test_include_keypoints_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_keypoints: tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes], augmented_tensor_dict[fields.InputDataFields. groundtruth_keypoints]) image, boxes, keypoints = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllClose(boxes, [[10, 10, 20, 20]]) self.assertAllClose(keypoints, [[[10, 20], [10, 10]]]) def _fake_model_preprocessor_fn(image): return (image, tf.expand_dims(tf.shape(image)[1:], axis=0)) def _fake_image_resizer_fn(image, mask): return (image, mask, tf.shape(image)) def _fake_resize50_preprocess_fn(image): image = image[0] image, shape = preprocessor.resize_to_range( image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True) return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0) class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase): def test_combine_additional_channels_if_present(self): image = np.random.rand(4, 4, 3).astype(np.float32) additional_channels = np.random.rand(4, 4, 2).astype(np.float32) def graph_fn(image, additional_channels): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.image_additional_channels: additional_channels, fields.InputDataFields.groundtruth_classes: tf.constant([1, 1], tf.int32) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=1) out_tensors = input_transformation_fn(tensor_dict=tensor_dict) return out_tensors[fields.InputDataFields.image] out_image = self.execute_cpu(graph_fn, [image, additional_channels]) self.assertAllEqual(out_image.dtype, tf.float32) self.assertAllEqual(out_image.shape, [4, 4, 5]) self.assertAllClose(out_image, np.concatenate((image, additional_channels), axis=2)) def test_use_multiclass_scores_when_present(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3). astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.multiclass_scores: tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3, use_multiclass_scores=True) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return transformed_inputs[fields.InputDataFields.groundtruth_classes] groundtruth_classes = self.execute_cpu(graph_fn, []) self.assertAllClose( np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32), groundtruth_classes) @unittest.skipIf(tf_version.is_tf2(), ('Skipping due to different behaviour ' 'in TF 2.X')) def test_use_multiclass_scores_when_not_present(self): def graph_fn(): zero_num_elements = tf.random.uniform([], minval=0, maxval=1, dtype=tf.int32) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.multiclass_scores: tf.zeros(zero_num_elements), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3, use_multiclass_scores=True) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return transformed_inputs[fields.InputDataFields.groundtruth_classes] groundtruth_classes = self.execute_cpu(graph_fn, []) self.assertAllClose( np.array([[0, 1, 0], [0, 0, 1]], np.float32), groundtruth_classes) @parameterized.parameters( {'labeled_classes': [1, 2]}, {'labeled_classes': []}, {'labeled_classes': [1, -1, 2]} # -1 denotes an unrecognized class ) def test_use_labeled_classes(self, labeled_classes): def compute_fn(image, groundtruth_boxes, groundtruth_classes, groundtruth_labeled_classes): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: groundtruth_boxes, fields.InputDataFields.groundtruth_classes: groundtruth_classes, fields.InputDataFields.groundtruth_labeled_classes: groundtruth_labeled_classes } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3) return input_transformation_fn(tensor_dict=tensor_dict) image = np.random.rand(4, 4, 3).astype(np.float32) groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32) groundtruth_classes = np.array([1, 2], np.int32) groundtruth_labeled_classes = np.array(labeled_classes, np.int32) transformed_inputs = self.execute_cpu(compute_fn, [ image, groundtruth_boxes, groundtruth_classes, groundtruth_labeled_classes ]) if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]: transformed_labeled_classes = [1, 1, 0] elif not labeled_classes: transformed_labeled_classes = [1, 1, 1] else: logging.exception('Unexpected labeled_classes %r', labeled_classes) self.assertAllEqual( np.array(transformed_labeled_classes, np.float32), transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes]) def test_returns_correct_class_label_encodings(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields. groundtruth_confidences]) (groundtruth_classes, groundtruth_confidences) = self.execute_cpu(graph_fn, []) self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) self.assertAllClose(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]]) def test_returns_correct_labels_with_unrecognized_class(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant( np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_area: tf.constant(np.array([.5, .4, .3])), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, -1, 1], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant( np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]], np.float32)), fields.InputDataFields.groundtruth_keypoint_visibilities: tf.constant([[True, True], [False, False], [True, True]]), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(3, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_is_crowd: tf.constant([False, True, False]), fields.InputDataFields.groundtruth_difficult: tf.constant(np.array([0, 0, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_area], transformed_inputs[fields.InputDataFields. groundtruth_confidences], transformed_inputs[fields.InputDataFields.groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_keypoints], transformed_inputs[fields.InputDataFields. groundtruth_keypoint_visibilities], transformed_inputs[fields.InputDataFields. groundtruth_instance_masks], transformed_inputs[fields.InputDataFields.groundtruth_is_crowd], transformed_inputs[fields.InputDataFields.groundtruth_difficult]) (groundtruth_classes, num_groundtruth_boxes, groundtruth_area, groundtruth_confidences, groundtruth_boxes, groundtruth_keypoints, groundtruth_keypoint_visibilities, groundtruth_instance_masks, groundtruth_is_crowd, groundtruth_difficult) = self.execute_cpu(graph_fn, []) self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) self.assertAllEqual(num_groundtruth_boxes, 2) self.assertAllClose(groundtruth_area, [.5, .3]) self.assertAllEqual(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]]) self.assertAllClose(groundtruth_boxes, [[0, 0, 1, 1], [.5, .5, 1, 1]]) self.assertAllClose(groundtruth_keypoints, [[[.1, .1]], [[.5, .5]]]) self.assertAllEqual(groundtruth_keypoint_visibilities, [[True, True], [True, True]]) self.assertAllEqual(groundtruth_instance_masks.shape, [2, 4, 4]) self.assertAllEqual(groundtruth_is_crowd, [False, False]) self.assertAllEqual(groundtruth_difficult, [0, 1]) def test_returns_correct_merged_boxes(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, merge_multiple_boxes=True) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields. groundtruth_confidences], transformed_inputs[fields.InputDataFields.num_groundtruth_boxes]) (groundtruth_boxes, groundtruth_classes, groundtruth_confidences, num_groundtruth_boxes) = self.execute_cpu(graph_fn, []) self.assertAllClose( groundtruth_boxes, [[.5, .5, 1., 1.]]) self.assertAllClose( groundtruth_classes, [[1, 0, 1]]) self.assertAllClose( groundtruth_confidences, [[1, 0, 1]]) self.assertAllClose( num_groundtruth_boxes, 1) def test_returns_correct_groundtruth_confidences_when_input_present(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)), fields.InputDataFields.groundtruth_confidences: tf.constant(np.array([1.0, -1.0], np.float32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields. groundtruth_confidences]) groundtruth_classes, groundtruth_confidences = self.execute_cpu(graph_fn, []) self.assertAllClose( groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) self.assertAllClose( groundtruth_confidences, [[0, 0, 1], [-1, 0, 0]]) def test_returns_resized_masks(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(2, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)), fields.InputDataFields.original_image_spatial_shape: tf.constant(np.array([4, 4], np.int32)) } def fake_image_resizer_fn(image, masks=None): resized_image = tf.image.resize_images(image, [8, 8]) results = [resized_image] if masks is not None: resized_masks = tf.transpose( tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]), [2, 0, 1]) results.append(resized_masks) results.append(tf.shape(resized_image)) return results num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=fake_image_resizer_fn, num_classes=num_classes, retain_original_image=True) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.original_image], transformed_inputs[fields.InputDataFields. original_image_spatial_shape], transformed_inputs[fields.InputDataFields. groundtruth_instance_masks]) (original_image, original_image_shape, groundtruth_instance_masks) = self.execute_cpu(graph_fn, []) self.assertEqual(original_image.dtype, np.uint8) self.assertAllEqual(original_image_shape, [4, 4]) self.assertAllEqual(original_image.shape, [8, 8, 3]) self.assertAllEqual(groundtruth_instance_masks.shape, [2, 8, 8]) def test_applies_model_preprocess_fn_to_image_tensor(self): np_image = np.random.randint(256, size=(4, 4, 3)) def graph_fn(image): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def fake_model_preprocessor_fn(image): return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0)) num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.image], transformed_inputs[fields.InputDataFields.true_image_shape]) image, true_image_shape = self.execute_cpu(graph_fn, [np_image]) self.assertAllClose(image, np_image / 255.) self.assertAllClose(true_image_shape, [4, 4, 3]) def test_applies_data_augmentation_fn_to_tensor_dict(self): np_image = np.random.randint(256, size=(4, 4, 3)) def graph_fn(image): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def add_one_data_augmentation_fn(tensor_dict): return {key: value + 1 for key, value in tensor_dict.items()} num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_one_data_augmentation_fn) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.image], transformed_inputs[fields.InputDataFields.groundtruth_classes]) image, groundtruth_classes = self.execute_cpu(graph_fn, [np_image]) self.assertAllEqual(image, np_image + 1) self.assertAllEqual( groundtruth_classes, [[0, 0, 0, 1], [0, 1, 0, 0]]) def test_applies_data_augmentation_fn_before_model_preprocess_fn(self): np_image = np.random.randint(256, size=(4, 4, 3)) def graph_fn(image): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def mul_two_model_preprocessor_fn(image): return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0)) def add_five_to_image_data_augmentation_fn(tensor_dict): tensor_dict[fields.InputDataFields.image] += 5 return tensor_dict num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=mul_two_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_five_to_image_data_augmentation_fn) transformed_inputs = input_transformation_fn(tensor_dict) return transformed_inputs[fields.InputDataFields.image] image = self.execute_cpu(graph_fn, [np_image]) self.assertAllEqual(image, (np_image + 5) * 2) def test_resize_with_padding(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]), } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes,) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_keypoints]) groundtruth_boxes, groundtruth_keypoints = self.execute_cpu(graph_fn, []) self.assertAllClose( groundtruth_boxes, [[.5, .25, 1., .5], [.0, .0, .5, .25]]) self.assertAllClose( groundtruth_keypoints, [[[.1, .1]], [[.3, .2]]]) def test_groundtruth_keypoint_weights(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant([[[0.1, 0.2], [0.3, 0.4]], [[0.5, 0.6], [0.7, 0.8]]]), fields.InputDataFields.groundtruth_keypoint_visibilities: tf.constant([[True, False], [True, True]]), } num_classes = 3 keypoint_type_weight = [1.0, 2.0] input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, keypoint_type_weight=keypoint_type_weight) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints], transformed_inputs[fields.InputDataFields. groundtruth_keypoint_weights]) groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu( graph_fn, []) self.assertAllClose( groundtruth_keypoints, [[[0.1, 0.1], [0.3, 0.2]], [[0.5, 0.3], [0.7, 0.4]]]) self.assertAllClose( groundtruth_keypoint_weights, [[1.0, 0.0], [1.0, 2.0]]) def test_groundtruth_keypoint_weights_default(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant([[[0.1, 0.2], [0.3, 0.4]], [[0.5, 0.6], [0.7, 0.8]]]), } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints], transformed_inputs[fields.InputDataFields. groundtruth_keypoint_weights]) groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu( graph_fn, []) self.assertAllClose( groundtruth_keypoints, [[[0.1, 0.1], [0.3, 0.2]], [[0.5, 0.3], [0.7, 0.4]]]) self.assertAllClose( groundtruth_keypoint_weights, [[1.0, 1.0], [1.0, 1.0]]) class PadInputDataToStaticShapesFnTest(test_case.TestCase): def test_pad_images_boxes_and_classes(self): input_tensor_dict = { fields.InputDataFields.image: tf.random.uniform([3, 3, 3]), fields.InputDataFields.groundtruth_boxes: tf.random.uniform([2, 4]), fields.InputDataFields.groundtruth_classes: tf.random.uniform([2, 3], minval=0, maxval=2, dtype=tf.int32), fields.InputDataFields.true_image_shape: tf.constant([3, 3, 3]), fields.InputDataFields.original_image_spatial_shape: tf.constant([3, 3]) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.true_image_shape] .shape.as_list(), [3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape] .shape.as_list(), [2]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_boxes] .shape.as_list(), [3, 4]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_classes] .shape.as_list(), [3, 3]) def test_clip_boxes_and_classes(self): def graph_fn(): input_tensor_dict = { fields.InputDataFields.groundtruth_boxes: tf.random.uniform([5, 4]), fields.InputDataFields.groundtruth_classes: tf.random.uniform([2, 3], maxval=10, dtype=tf.int32), fields.InputDataFields.num_groundtruth_boxes: tf.constant(5) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) return (padded_tensor_dict[fields.InputDataFields.groundtruth_boxes], padded_tensor_dict[fields.InputDataFields.groundtruth_classes], padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]) (groundtruth_boxes, groundtruth_classes, num_groundtruth_boxes) = self.execute_cpu(graph_fn, []) self.assertAllEqual(groundtruth_boxes.shape, [3, 4]) self.assertAllEqual(groundtruth_classes.shape, [3, 3]) self.assertEqual(num_groundtruth_boxes, 3) def test_images_and_additional_channels(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(4, 3, 5), fields.InputDataFields.image_additional_channels: test_utils.image_with_dynamic_shape(4, 3, 2), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) # pad_input_data_to_static_shape assumes that image is already concatenated # with additional channels. self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 5]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image_additional_channels] .shape.as_list(), [5, 6, 2]) def test_images_and_additional_channels_errors(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(10, 10, 3), fields.InputDataFields.image_additional_channels: test_utils.image_with_dynamic_shape(10, 10, 2), fields.InputDataFields.original_image: test_utils.image_with_dynamic_shape(10, 10, 3), } with self.assertRaises(ValueError): _ = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) def test_gray_images(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(4, 4, 1), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 1]) def test_gray_images_and_additional_channels(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(4, 4, 3), fields.InputDataFields.image_additional_channels: test_utils.image_with_dynamic_shape(4, 4, 2), } # pad_input_data_to_static_shape assumes that image is already concatenated # with additional channels. padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image_additional_channels] .shape.as_list(), [5, 6, 2]) def test_keypoints(self): keypoints = test_utils.keypoints_with_dynamic_shape(10, 16, 4) visibilities = tf.cast(tf.random.uniform(tf.shape(keypoints)[:-1], minval=0, maxval=2, dtype=tf.int32), tf.bool) input_tensor_dict = { fields.InputDataFields.groundtruth_keypoints: test_utils.keypoints_with_dynamic_shape(10, 16, 4), fields.InputDataFields.groundtruth_keypoint_visibilities: visibilities } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints] .shape.as_list(), [3, 16, 4]) self.assertAllEqual( padded_tensor_dict[ fields.InputDataFields.groundtruth_keypoint_visibilities] .shape.as_list(), [3, 16]) def test_context_features(self): context_memory_size = 8 context_feature_length = 10 max_num_context_features = 20 def graph_fn(): input_tensor_dict = { fields.InputDataFields.context_features: tf.ones([context_memory_size, context_feature_length]), fields.InputDataFields.context_feature_length: tf.constant(context_feature_length) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6], max_num_context_features=max_num_context_features, context_feature_length=context_feature_length) self.assertAllEqual( padded_tensor_dict[ fields.InputDataFields.context_features].shape.as_list(), [max_num_context_features, context_feature_length]) return padded_tensor_dict[fields.InputDataFields.valid_context_size] valid_context_size = self.execute_cpu(graph_fn, []) self.assertEqual(valid_context_size, context_memory_size) class NegativeSizeTest(test_case.TestCase): """Test for inputs and related funcitons.""" def test_negative_size_error(self): """Test that error is raised for negative size boxes.""" def graph_fn(): tensors = { fields.InputDataFields.image: tf.zeros((128, 128, 3)), fields.InputDataFields.groundtruth_classes: tf.constant([1, 1], tf.int32), fields.InputDataFields.groundtruth_boxes: tf.constant([[0.5, 0.5, 0.4, 0.5]], tf.float32) } tensors = inputs.transform_input_data( tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn, num_classes=10) return tensors[fields.InputDataFields.groundtruth_boxes] with self.assertRaises(tf.errors.InvalidArgumentError): self.execute_cpu(graph_fn, []) def test_negative_size_no_assert(self): """Test that negative size boxes are filtered out without assert. This test simulates the behaviour when we run on TPU and Assert ops are not supported. """ tensors = { fields.InputDataFields.image: tf.zeros((128, 128, 3)), fields.InputDataFields.groundtruth_classes: tf.constant([1, 1], tf.int32), fields.InputDataFields.groundtruth_boxes: tf.constant([[0.5, 0.5, 0.4, 0.5], [0.5, 0.5, 0.6, 0.6]], tf.float32) } with mock.patch.object(tf, 'Assert') as tf_assert: tf_assert.return_value = tf.no_op() tensors = inputs.transform_input_data( tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn, num_classes=10) self.assertAllClose(tensors[fields.InputDataFields.groundtruth_boxes], [[0.5, 0.5, 0.6, 0.6]]) if __name__ == '__main__': tf.test.main()