# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Evaluation executable for detection models. This executable is used to evaluate DetectionModels. There are two ways of configuring the eval job. 1) A single pipeline_pb2.TrainEvalPipelineConfig file maybe specified instead. In this mode, the --eval_training_data flag may be given to force the pipeline to evaluate on training data instead. Example usage: ./eval \ --logtostderr \ --checkpoint_dir=path/to/checkpoint_dir \ --eval_dir=path/to/eval_dir \ --pipeline_config_path=pipeline_config.pbtxt 2) Three configuration files may be provided: a model_pb2.DetectionModel configuration file to define what type of DetectionModel is being evaluated, an input_reader_pb2.InputReader file to specify what data the model is evaluating and an eval_pb2.EvalConfig file to configure evaluation parameters. Example usage: ./eval \ --logtostderr \ --checkpoint_dir=path/to/checkpoint_dir \ --eval_dir=path/to/eval_dir \ --eval_config_path=eval_config.pbtxt \ --model_config_path=model_config.pbtxt \ --input_config_path=eval_input_config.pbtxt """ import functools import os import tensorflow.compat.v1 as tf from tensorflow.python.util.deprecation import deprecated from object_detection.builders import dataset_builder from object_detection.builders import graph_rewriter_builder from object_detection.builders import model_builder from object_detection.legacy import evaluator from object_detection.utils import config_util from object_detection.utils import label_map_util tf.logging.set_verbosity(tf.logging.INFO) flags = tf.app.flags flags.DEFINE_boolean('eval_training_data', False, 'If training data should be evaluated for this job.') flags.DEFINE_string( 'checkpoint_dir', '', 'Directory containing checkpoints to evaluate, typically ' 'set to `train_dir` used in the training job.') flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.') flags.DEFINE_string( 'pipeline_config_path', '', 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file. If provided, other configs are ignored') flags.DEFINE_string('eval_config_path', '', 'Path to an eval_pb2.EvalConfig config file.') flags.DEFINE_string('input_config_path', '', 'Path to an input_reader_pb2.InputReader config file.') flags.DEFINE_string('model_config_path', '', 'Path to a model_pb2.DetectionModel config file.') flags.DEFINE_boolean( 'run_once', False, 'Option to only run a single pass of ' 'evaluation. Overrides the `max_evals` parameter in the ' 'provided config.') FLAGS = flags.FLAGS @deprecated(None, 'Use object_detection/model_main.py.') def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' tf.gfile.MakeDirs(FLAGS.eval_dir) if FLAGS.pipeline_config_path: configs = config_util.get_configs_from_pipeline_file( FLAGS.pipeline_config_path) tf.gfile.Copy( FLAGS.pipeline_config_path, os.path.join(FLAGS.eval_dir, 'pipeline.config'), overwrite=True) else: configs = config_util.get_configs_from_multiple_files( model_config_path=FLAGS.model_config_path, eval_config_path=FLAGS.eval_config_path, eval_input_config_path=FLAGS.input_config_path) for name, config in [('model.config', FLAGS.model_config_path), ('eval.config', FLAGS.eval_config_path), ('input.config', FLAGS.input_config_path)]: tf.gfile.Copy(config, os.path.join(FLAGS.eval_dir, name), overwrite=True) model_config = configs['model'] eval_config = configs['eval_config'] input_config = configs['eval_input_config'] if FLAGS.eval_training_data: input_config = configs['train_input_config'] model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) def get_next(config): return dataset_builder.make_initializable_iterator( dataset_builder.build(config)).get_next() create_input_dict_fn = functools.partial(get_next, input_config) categories = label_map_util.create_categories_from_labelmap( input_config.label_map_path) if FLAGS.run_once: eval_config.max_evals = 1 graph_rewriter_fn = None if 'graph_rewriter_config' in configs: graph_rewriter_fn = graph_rewriter_builder.build( configs['graph_rewriter_config'], is_training=False) evaluator.evaluate( create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir, graph_hook_fn=graph_rewriter_fn) if __name__ == '__main__': tf.app.run()