# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.patch_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow.compat.v1 as tf from object_detection.utils import patch_ops from object_detection.utils import test_case class GetPatchMaskTest(test_case.TestCase, parameterized.TestCase): def testMaskShape(self): image_shape = [15, 10] mask = patch_ops.get_patch_mask( 10, 5, patch_size=3, image_shape=image_shape) self.assertListEqual(mask.shape.as_list(), image_shape) def testHandleImageShapeWithChannels(self): image_shape = [15, 10, 3] mask = patch_ops.get_patch_mask( 10, 5, patch_size=3, image_shape=image_shape) self.assertListEqual(mask.shape.as_list(), image_shape[:2]) def testMaskDType(self): mask = patch_ops.get_patch_mask(2, 3, patch_size=2, image_shape=[6, 7]) self.assertDTypeEqual(mask, bool) def testMaskAreaWithEvenPatchSize(self): image_shape = [6, 7] mask = patch_ops.get_patch_mask(2, 3, patch_size=2, image_shape=image_shape) expected_mask = np.array([ [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], ]).reshape(image_shape).astype(bool) self.assertAllEqual(mask, expected_mask) def testMaskAreaWithEvenPatchSize4(self): image_shape = [6, 7] mask = patch_ops.get_patch_mask(2, 3, patch_size=4, image_shape=image_shape) expected_mask = np.array([ [0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], ]).reshape(image_shape).astype(bool) self.assertAllEqual(mask, expected_mask) def testMaskAreaWithOddPatchSize(self): image_shape = [6, 7] mask = patch_ops.get_patch_mask(2, 3, patch_size=3, image_shape=image_shape) expected_mask = np.array([ [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], ]).reshape(image_shape).astype(bool) self.assertAllEqual(mask, expected_mask) def testMaskAreaPartiallyOutsideImage(self): image_shape = [6, 7] mask = patch_ops.get_patch_mask(5, 6, patch_size=5, image_shape=image_shape) expected_mask = np.array([ [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1], ]).reshape(image_shape).astype(bool) self.assertAllEqual(mask, expected_mask) @parameterized.parameters( {'y': 0, 'x': -1}, {'y': -1, 'x': 0}, {'y': 0, 'x': 11}, {'y': 16, 'x': 0}, ) def testStaticCoordinatesOutsideImageRaisesError(self, y, x): image_shape = [15, 10] with self.assertRaises(tf.errors.InvalidArgumentError): patch_ops.get_patch_mask(y, x, patch_size=3, image_shape=image_shape) def testDynamicCoordinatesOutsideImageRaisesError(self): def graph_fn(): image_shape = [15, 10] x = tf.random_uniform([], minval=-2, maxval=-1, dtype=tf.int32) y = tf.random_uniform([], minval=0, maxval=1, dtype=tf.int32) mask = patch_ops.get_patch_mask( y, x, patch_size=3, image_shape=image_shape) return mask with self.assertRaises(tf.errors.InvalidArgumentError): self.execute(graph_fn, []) @parameterized.parameters( {'patch_size': 0}, {'patch_size': -1}, ) def testStaticNonPositivePatchSizeRaisesError(self, patch_size): image_shape = [6, 7] with self.assertRaises(tf.errors.InvalidArgumentError): patch_ops.get_patch_mask( 0, 0, patch_size=patch_size, image_shape=image_shape) def testDynamicNonPositivePatchSizeRaisesError(self): def graph_fn(): image_shape = [6, 7] patch_size = -1 * tf.random_uniform([], minval=0, maxval=3, dtype=tf.int32) mask = patch_ops.get_patch_mask( 0, 0, patch_size=patch_size, image_shape=image_shape) return mask with self.assertRaises(tf.errors.InvalidArgumentError): self.execute(graph_fn, []) if __name__ == '__main__': tf.test.main()