# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""LSUN dataset formatting. Download and format the Imagenet dataset as follow: mkdir [IMAGENET_PATH] cd [IMAGENET_PATH] for FILENAME in train_32x32.tar valid_32x32.tar train_64x64.tar valid_64x64.tar do curl -O http://image-net.org/small/$FILENAME tar -xvf $FILENAME done Then use the script as follow: for DIRNAME in train_32x32 valid_32x32 train_64x64 valid_64x64 do python imnet_formatting.py \ --file_out $DIRNAME \ --fn_root $DIRNAME done """ from __future__ import print_function import os import os.path import scipy.io import scipy.io.wavfile import scipy.ndimage import tensorflow as tf tf.flags.DEFINE_string("file_out", "", "Filename of the output .tfrecords file.") tf.flags.DEFINE_string("fn_root", "", "Name of root file path.") FLAGS = tf.flags.FLAGS def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def main(): """Main converter function.""" # LSUN fn_root = FLAGS.fn_root img_fn_list = os.listdir(fn_root) img_fn_list = [img_fn for img_fn in img_fn_list if img_fn.endswith('.png')] num_examples = len(img_fn_list) n_examples_per_file = 10000 for example_idx, img_fn in enumerate(img_fn_list): if example_idx % n_examples_per_file == 0: file_out = "%s_%05d.tfrecords" file_out = file_out % (FLAGS.file_out, example_idx // n_examples_per_file) print("Writing on:", file_out) writer = tf.python_io.TFRecordWriter(file_out) if example_idx % 1000 == 0: print(example_idx, "/", num_examples) image_raw = scipy.ndimage.imread(os.path.join(fn_root, img_fn)) rows = image_raw.shape[0] cols = image_raw.shape[1] depth = image_raw.shape[2] image_raw = image_raw.astype("uint8") image_raw = image_raw.tostring() example = tf.train.Example( features=tf.train.Features( feature={ "height": _int64_feature(rows), "width": _int64_feature(cols), "depth": _int64_feature(depth), "image_raw": _bytes_feature(image_raw) } ) ) writer.write(example.SerializeToString()) if example_idx % n_examples_per_file == (n_examples_per_file - 1): writer.close() writer.close() if __name__ == "__main__": main()