"""Model for sentiment analysis. The model makes use of concatenation of two CNN layers with different kernel sizes. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class CNN(tf.keras.models.Model): """CNN for sentimental analysis.""" def __init__(self, emb_dim, num_words, sentence_length, hid_dim, class_dim, dropout_rate): """Initialize CNN model. Args: emb_dim: The dimension of the Embedding layer. num_words: The number of the most frequent tokens to be used from the corpus. sentence_length: The number of words in each sentence. Longer sentences get cut, shorter ones padded. hid_dim: The dimension of the Embedding layer. class_dim: The number of the CNN layer filters. dropout_rate: The portion of kept value in the Dropout layer. Returns: tf.keras.models.Model: A Keras model. """ input_layer = tf.keras.layers.Input(shape=(sentence_length,), dtype=tf.int32) layer = tf.keras.layers.Embedding(num_words, output_dim=emb_dim)(input_layer) layer_conv3 = tf.keras.layers.Conv1D(hid_dim, 3, activation="relu")(layer) layer_conv3 = tf.keras.layers.GlobalMaxPooling1D()(layer_conv3) layer_conv4 = tf.keras.layers.Conv1D(hid_dim, 2, activation="relu")(layer) layer_conv4 = tf.keras.layers.GlobalMaxPooling1D()(layer_conv4) layer = tf.keras.layers.concatenate([layer_conv4, layer_conv3], axis=1) layer = tf.keras.layers.BatchNormalization()(layer) layer = tf.keras.layers.Dropout(dropout_rate)(layer) output = tf.keras.layers.Dense(class_dim, activation="softmax")(layer) super(CNN, self).__init__(inputs=[input_layer], outputs=output)