# Lint as: python2, python3 # Copyright 2019 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Parsing Covering metric.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest import numpy as np from deeplab.evaluation import parsing_covering from deeplab.evaluation import test_utils # See the definition of the color names at: # https://en.wikipedia.org/wiki/Web_colors. _CLASS_COLOR_MAP = { (0, 0, 0): 0, (0, 0, 255): 1, # Person (blue). (255, 0, 0): 2, # Bear (red). (0, 255, 0): 3, # Tree (lime). (255, 0, 255): 4, # Bird (fuchsia). (0, 255, 255): 5, # Sky (aqua). (255, 255, 0): 6, # Cat (yellow). } class CoveringConveringTest(absltest.TestCase): def test_perfect_match(self): categories = np.zeros([6, 6], np.uint16) instances = np.array([ [2, 2, 2, 2, 2, 2], [2, 4, 4, 4, 4, 2], [2, 4, 4, 4, 4, 2], [2, 4, 4, 4, 4, 2], [2, 4, 4, 2, 2, 2], [2, 4, 2, 2, 2, 2], ], dtype=np.uint16) pc = parsing_covering.ParsingCovering( num_categories=3, ignored_label=2, max_instances_per_category=2, offset=16, normalize_by_image_size=False) pc.compare_and_accumulate(categories, instances, categories, instances) np.testing.assert_array_equal(pc.weighted_iou_per_class, [0.0, 21.0, 0.0]) np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 21.0, 0.0]) np.testing.assert_array_equal(pc.result_per_category(), [0.0, 1.0, 0.0]) self.assertEqual(pc.result(), 1.0) def test_totally_wrong(self): categories = np.zeros([6, 6], np.uint16) gt_instances = np.array([ [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], ], dtype=np.uint16) pred_instances = 1 - gt_instances pc = parsing_covering.ParsingCovering( num_categories=2, ignored_label=0, max_instances_per_category=1, offset=16, normalize_by_image_size=False) pc.compare_and_accumulate(categories, gt_instances, categories, pred_instances) np.testing.assert_array_equal(pc.weighted_iou_per_class, [0.0, 0.0]) np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 10.0]) np.testing.assert_array_equal(pc.result_per_category(), [0.0, 0.0]) self.assertEqual(pc.result(), 0.0) def test_matches_expected(self): pred_classes = test_utils.read_segmentation_with_rgb_color_map( 'team_pred_class.png', _CLASS_COLOR_MAP) pred_instances = test_utils.read_test_image( 'team_pred_instance.png', mode='L') instance_class_map = { 0: 0, 47: 1, 97: 1, 133: 1, 150: 1, 174: 1, 198: 2, 215: 1, 244: 1, 255: 1, } gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( 'team_gt_instance.png', instance_class_map) pc = parsing_covering.ParsingCovering( num_categories=3, ignored_label=0, max_instances_per_category=256, offset=256 * 256, normalize_by_image_size=False) pc.compare_and_accumulate(gt_classes, gt_instances, pred_classes, pred_instances) np.testing.assert_array_almost_equal( pc.weighted_iou_per_class, [0.0, 39864.14634, 3136], decimal=4) np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 56870, 5800]) np.testing.assert_array_almost_equal( pc.result_per_category(), [0.0, 0.70097, 0.54069], decimal=4) self.assertAlmostEqual(pc.result(), 0.6208296732) def test_matches_expected_normalize_by_size(self): pred_classes = test_utils.read_segmentation_with_rgb_color_map( 'team_pred_class.png', _CLASS_COLOR_MAP) pred_instances = test_utils.read_test_image( 'team_pred_instance.png', mode='L') instance_class_map = { 0: 0, 47: 1, 97: 1, 133: 1, 150: 1, 174: 1, 198: 2, 215: 1, 244: 1, 255: 1, } gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( 'team_gt_instance.png', instance_class_map) pc = parsing_covering.ParsingCovering( num_categories=3, ignored_label=0, max_instances_per_category=256, offset=256 * 256, normalize_by_image_size=True) pc.compare_and_accumulate(gt_classes, gt_instances, pred_classes, pred_instances) np.testing.assert_array_almost_equal( pc.weighted_iou_per_class, [0.0, 0.5002088756, 0.03935002196], decimal=4) np.testing.assert_array_almost_equal( pc.gt_area_per_class, [0.0, 0.7135955832, 0.07277746408], decimal=4) # Note that the per-category and overall PCs are identical to those without # normalization in the previous test, because we only have a single image. np.testing.assert_array_almost_equal( pc.result_per_category(), [0.0, 0.70097, 0.54069], decimal=4) self.assertAlmostEqual(pc.result(), 0.6208296732) if __name__ == '__main__': absltest.main()