# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for autoaugment.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function from absl.testing import parameterized import tensorflow as tf from official.vision.image_classification import augment def get_dtype_test_cases(): return [ ('uint8', tf.uint8), ('int32', tf.int32), ('float16', tf.float16), ('float32', tf.float32), ] @parameterized.named_parameters(get_dtype_test_cases()) class TransformsTest(parameterized.TestCase, tf.test.TestCase): """Basic tests for fundamental transformations.""" def test_to_from_4d(self, dtype): for shape in [(10, 10), (10, 10, 10), (10, 10, 10, 10)]: original_ndims = len(shape) image = tf.zeros(shape, dtype=dtype) image_4d = augment.to_4d(image) self.assertEqual(4, tf.rank(image_4d)) self.assertAllEqual(image, augment.from_4d(image_4d, original_ndims)) def test_transform(self, dtype): image = tf.constant([[1, 2], [3, 4]], dtype=dtype) self.assertAllEqual(augment.transform(image, transforms=[1]*8), [[4, 4], [4, 4]]) def test_translate(self, dtype): image = tf.constant( [[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1]], dtype=dtype) translations = [-1, -1] translated = augment.translate(image=image, translations=translations) expected = [ [1, 0, 1, 1], [0, 1, 0, 0], [1, 0, 1, 1], [1, 0, 1, 1]] self.assertAllEqual(translated, expected) def test_translate_shapes(self, dtype): translation = [0, 0] for shape in [(3, 3), (5, 5), (224, 224, 3)]: image = tf.zeros(shape, dtype=dtype) self.assertAllEqual(image, augment.translate(image, translation)) def test_translate_invalid_translation(self, dtype): image = tf.zeros((1, 1), dtype=dtype) invalid_translation = [[[1, 1]]] with self.assertRaisesRegex(TypeError, 'rank 1 or 2'): _ = augment.translate(image, invalid_translation) def test_rotate(self, dtype): image = tf.reshape(tf.cast(tf.range(9), dtype), (3, 3)) rotation = 90. transformed = augment.rotate(image=image, degrees=rotation) expected = [[2, 5, 8], [1, 4, 7], [0, 3, 6]] self.assertAllEqual(transformed, expected) def test_rotate_shapes(self, dtype): degrees = 0. for shape in [(3, 3), (5, 5), (224, 224, 3)]: image = tf.zeros(shape, dtype=dtype) self.assertAllEqual(image, augment.rotate(image, degrees)) class AutoaugmentTest(tf.test.TestCase): def test_autoaugment(self): """Smoke test to be sure there are no syntax errors.""" image = tf.zeros((224, 224, 3), dtype=tf.uint8) augmenter = augment.AutoAugment() aug_image = augmenter.distort(image) self.assertEqual((224, 224, 3), aug_image.shape) def test_randaug(self): """Smoke test to be sure there are no syntax errors.""" image = tf.zeros((224, 224, 3), dtype=tf.uint8) augmenter = augment.RandAugment() aug_image = augmenter.distort(image) self.assertEqual((224, 224, 3), aug_image.shape) def test_all_policy_ops(self): """Smoke test to be sure all augmentation functions can execute.""" prob = 1 magnitude = 10 replace_value = [128] * 3 cutout_const = 100 translate_const = 250 image = tf.ones((224, 224, 3), dtype=tf.uint8) for op_name in augment.NAME_TO_FUNC: func, _, args = augment._parse_policy_info(op_name, prob, magnitude, replace_value, cutout_const, translate_const) image = func(image, *args) self.assertEqual((224, 224, 3), image.shape) if __name__ == '__main__': tf.test.main()