# Lint as: python3 # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for the classifier trainer models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import functools import json import os import sys from typing import Any, Callable, Iterable, Mapping, MutableMapping, Optional, Tuple from absl import flags from absl.testing import parameterized import tensorflow as tf from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from official.utils.flags import core as flags_core from official.vision.image_classification import classifier_trainer from official.vision.image_classification import dataset_factory from official.vision.image_classification import test_utils from official.vision.image_classification.configs import base_configs classifier_trainer.define_classifier_flags() def distribution_strategy_combinations() -> Iterable[Tuple[Any, ...]]: """Returns the combinations of end-to-end tests to run.""" return combinations.combine( distribution=[ strategy_combinations.default_strategy, strategy_combinations.tpu_strategy, strategy_combinations.one_device_strategy_gpu, strategy_combinations.mirrored_strategy_with_two_gpus, ], model=[ 'efficientnet', 'resnet', ], mode='eager', dataset=[ 'imagenet', ], ) def get_params_override(params_override: Mapping[str, Any]) -> str: """Converts params_override dict to string command.""" return '--params_override=' + json.dumps(params_override) def basic_params_override(dtype: str = 'float32') -> MutableMapping[str, Any]: """Returns a basic parameter configuration for testing.""" return { 'train_dataset': { 'builder': 'synthetic', 'use_per_replica_batch_size': True, 'batch_size': 1, 'image_size': 224, 'dtype': dtype, }, 'validation_dataset': { 'builder': 'synthetic', 'batch_size': 1, 'use_per_replica_batch_size': True, 'image_size': 224, 'dtype': dtype, }, 'train': { 'steps': 1, 'epochs': 1, 'callbacks': { 'enable_checkpoint_and_export': True, 'enable_tensorboard': False, }, }, 'evaluation': { 'steps': 1, }, } def get_trivial_model(num_classes: int) -> tf.keras.Model: """Creates and compiles trivial model for ImageNet dataset.""" model = test_utils.trivial_model(num_classes=num_classes) lr = 0.01 optimizer = tf.keras.optimizers.SGD(learning_rate=lr) loss_obj = tf.keras.losses.SparseCategoricalCrossentropy() model.compile(optimizer=optimizer, loss=loss_obj, run_eagerly=True) return model def get_trivial_data() -> tf.data.Dataset: """Gets trivial data in the ImageNet size.""" def generate_data(_) -> tf.data.Dataset: image = tf.zeros(shape=(224, 224, 3), dtype=tf.float32) label = tf.zeros([1], dtype=tf.int32) return image, label dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map(generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.prefetch(buffer_size=1).batch(1) return dataset def run_end_to_end(main: Callable[[Any], None], extra_flags: Optional[Iterable[str]] = None, model_dir: Optional[str] = None): """Runs the classifier trainer end-to-end.""" extra_flags = [] if extra_flags is None else extra_flags args = [sys.argv[0], '--model_dir', model_dir] + extra_flags flags_core.parse_flags(argv=args) main(flags.FLAGS) class ClassifierTest(tf.test.TestCase, parameterized.TestCase): """Unit tests for Keras models.""" _tempdir = None @classmethod def setUpClass(cls): # pylint: disable=invalid-name super(ClassifierTest, cls).setUpClass() def tearDown(self): super(ClassifierTest, self).tearDown() tf.io.gfile.rmtree(self.get_temp_dir()) @combinations.generate(distribution_strategy_combinations()) def test_end_to_end_train_and_eval(self, distribution, model, dataset): """Test train_and_eval and export for Keras classifier models.""" # Some parameters are not defined as flags (e.g. cannot run # classifier_train.py --batch_size=...) by design, so use # "--params_override=..." instead model_dir = self.get_temp_dir() base_flags = [ '--data_dir=not_used', '--model_type=' + model, '--dataset=' + dataset, ] train_and_eval_flags = base_flags + [ get_params_override(basic_params_override()), '--mode=train_and_eval', ] run = functools.partial(classifier_trainer.run, strategy_override=distribution) run_end_to_end(main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) @combinations.generate( combinations.combine( distribution=[ strategy_combinations.one_device_strategy_gpu, ], model=[ 'efficientnet', 'resnet', ], mode='eager', dataset='imagenet', dtype='float16', )) def test_gpu_train(self, distribution, model, dataset, dtype): """Test train_and_eval and export for Keras classifier models.""" # Some parameters are not defined as flags (e.g. cannot run # classifier_train.py --batch_size=...) by design, so use # "--params_override=..." instead model_dir = self.get_temp_dir() base_flags = [ '--data_dir=not_used', '--model_type=' + model, '--dataset=' + dataset, ] train_and_eval_flags = base_flags + [ get_params_override(basic_params_override(dtype)), '--mode=train_and_eval', ] export_params = basic_params_override() export_path = os.path.join(model_dir, 'export') export_params['export'] = {} export_params['export']['destination'] = export_path export_flags = base_flags + [ '--mode=export_only', get_params_override(export_params) ] run = functools.partial(classifier_trainer.run, strategy_override=distribution) run_end_to_end(main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) run_end_to_end(main=run, extra_flags=export_flags, model_dir=model_dir) self.assertTrue(os.path.exists(export_path)) @combinations.generate( combinations.combine( distribution=[ strategy_combinations.tpu_strategy, ], model=[ 'efficientnet', 'resnet', ], mode='eager', dataset='imagenet', dtype='bfloat16', )) def test_tpu_train(self, distribution, model, dataset, dtype): """Test train_and_eval and export for Keras classifier models.""" # Some parameters are not defined as flags (e.g. cannot run # classifier_train.py --batch_size=...) by design, so use # "--params_override=..." instead model_dir = self.get_temp_dir() base_flags = [ '--data_dir=not_used', '--model_type=' + model, '--dataset=' + dataset, ] train_and_eval_flags = base_flags + [ get_params_override(basic_params_override(dtype)), '--mode=train_and_eval', ] run = functools.partial(classifier_trainer.run, strategy_override=distribution) run_end_to_end(main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) @combinations.generate(distribution_strategy_combinations()) def test_end_to_end_invalid_mode(self, distribution, model, dataset): """Test the Keras EfficientNet model with `strategy`.""" model_dir = self.get_temp_dir() extra_flags = [ '--data_dir=not_used', '--mode=invalid_mode', '--model_type=' + model, '--dataset=' + dataset, get_params_override(basic_params_override()), ] run = functools.partial(classifier_trainer.run, strategy_override=distribution) with self.assertRaises(ValueError): run_end_to_end(main=run, extra_flags=extra_flags, model_dir=model_dir) class UtilTests(parameterized.TestCase, tf.test.TestCase): """Tests for individual utility functions within classifier_trainer.py.""" @parameterized.named_parameters( ('efficientnet-b0', 'efficientnet', 'efficientnet-b0', 224), ('efficientnet-b1', 'efficientnet', 'efficientnet-b1', 240), ('efficientnet-b2', 'efficientnet', 'efficientnet-b2', 260), ('efficientnet-b3', 'efficientnet', 'efficientnet-b3', 300), ('efficientnet-b4', 'efficientnet', 'efficientnet-b4', 380), ('efficientnet-b5', 'efficientnet', 'efficientnet-b5', 456), ('efficientnet-b6', 'efficientnet', 'efficientnet-b6', 528), ('efficientnet-b7', 'efficientnet', 'efficientnet-b7', 600), ('resnet', 'resnet', '', None), ) def test_get_model_size(self, model, model_name, expected): config = base_configs.ExperimentConfig( model_name=model, model=base_configs.ModelConfig( model_params={ 'model_name': model_name, }, ) ) size = classifier_trainer.get_image_size_from_model(config) self.assertEqual(size, expected) @parameterized.named_parameters( ('dynamic', 'dynamic', None, 'dynamic'), ('scalar', 128., None, 128.), ('float32', None, 'float32', 1), ('float16', None, 'float16', 128), ) def test_get_loss_scale(self, loss_scale, dtype, expected): config = base_configs.ExperimentConfig( runtime=base_configs.RuntimeConfig( loss_scale=loss_scale), train_dataset=dataset_factory.DatasetConfig(dtype=dtype)) ls = classifier_trainer.get_loss_scale(config, fp16_default=128) self.assertEqual(ls, expected) @parameterized.named_parameters( ('float16', 'float16'), ('bfloat16', 'bfloat16') ) def test_initialize(self, dtype): config = base_configs.ExperimentConfig( runtime=base_configs.RuntimeConfig( run_eagerly=False, enable_xla=False, per_gpu_thread_count=1, gpu_thread_mode='gpu_private', num_gpus=1, dataset_num_private_threads=1, ), train_dataset=dataset_factory.DatasetConfig(dtype=dtype), model=base_configs.ModelConfig(), ) class EmptyClass: pass fake_ds_builder = EmptyClass() fake_ds_builder.dtype = dtype fake_ds_builder.config = EmptyClass() classifier_trainer.initialize(config, fake_ds_builder) def test_resume_from_checkpoint(self): """Tests functionality for resuming from checkpoint.""" # Set the keras policy policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16') tf.keras.mixed_precision.experimental.set_policy(policy) # Get the model, datasets, and compile it. model = get_trivial_model(10) # Create the checkpoint model_dir = self.get_temp_dir() train_epochs = 1 train_steps = 10 ds = get_trivial_data() callbacks = [ tf.keras.callbacks.ModelCheckpoint( os.path.join(model_dir, 'model.ckpt-{epoch:04d}'), save_weights_only=True) ] model.fit( ds, callbacks=callbacks, epochs=train_epochs, steps_per_epoch=train_steps) # Test load from checkpoint clean_model = get_trivial_model(10) weights_before_load = copy.deepcopy(clean_model.get_weights()) initial_epoch = classifier_trainer.resume_from_checkpoint( model=clean_model, model_dir=model_dir, train_steps=train_steps) self.assertEqual(initial_epoch, 1) self.assertNotAllClose(weights_before_load, clean_model.get_weights()) tf.io.gfile.rmtree(model_dir) def test_serialize_config(self): """Tests functionality for serializing data.""" config = base_configs.ExperimentConfig() model_dir = self.get_temp_dir() classifier_trainer.serialize_config(params=config, model_dir=model_dir) saved_params_path = os.path.join(model_dir, 'params.yaml') self.assertTrue(os.path.exists(saved_params_path)) tf.io.gfile.rmtree(model_dir) if __name__ == '__main__': tf.test.main()