# Lint as: python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Configuration definitions for ResNet losses, learning rates, and optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Any, Mapping import dataclasses from official.modeling.hyperparams import base_config from official.vision.image_classification.configs import base_configs _RESNET_LR_SCHEDULE = [ # (multiplier, epoch to start) tuples (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80) ] _RESNET_LR_BOUNDARIES = list(p[1] for p in _RESNET_LR_SCHEDULE[1:]) _RESNET_LR_MULTIPLIERS = list(p[0] for p in _RESNET_LR_SCHEDULE) _RESNET_LR_WARMUP_EPOCHS = _RESNET_LR_SCHEDULE[0][1] @dataclasses.dataclass class ResNetModelConfig(base_configs.ModelConfig): """Configuration for the ResNet model.""" name: str = 'ResNet' num_classes: int = 1000 model_params: base_config.Config = dataclasses.field( default_factory=lambda: { 'num_classes': 1000, 'batch_size': None, 'use_l2_regularizer': True, 'rescale_inputs': False, }) loss: base_configs.LossConfig = base_configs.LossConfig( name='sparse_categorical_crossentropy') optimizer: base_configs.OptimizerConfig = base_configs.OptimizerConfig( name='momentum', decay=0.9, epsilon=0.001, momentum=0.9, moving_average_decay=None) learning_rate: base_configs.LearningRateConfig = ( base_configs.LearningRateConfig( name='piecewise_constant_with_warmup', examples_per_epoch=1281167, warmup_epochs=_RESNET_LR_WARMUP_EPOCHS, boundaries=_RESNET_LR_BOUNDARIES, multipliers=_RESNET_LR_MULTIPLIERS))