from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from autoencoder_models.Autoencoder import Autoencoder mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def standard_scale(X_train, X_test): preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_test = preprocessor.transform(X_test) return X_train, X_test def get_random_block_from_data(data, batch_size): start_index = np.random.randint(0, len(data) - batch_size) return data[start_index:(start_index + batch_size)] X_train, X_test = standard_scale(mnist.train.images, mnist.test.images) n_samples = int(mnist.train.num_examples) training_epochs = 20 batch_size = 128 display_step = 1 autoencoder = Autoencoder(n_layers=[784, 200], transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(learning_rate = 0.001)) for epoch in range(training_epochs): avg_cost = 0. total_batch = int(n_samples / batch_size) # Loop over all batches for i in range(total_batch): batch_xs = get_random_block_from_data(X_train, batch_size) # Fit training using batch data cost = autoencoder.partial_fit(batch_xs) # Compute average loss avg_cost += cost / n_samples * batch_size # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%d,' % (epoch + 1), "Cost:", "{:.9f}".format(avg_cost)) print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))