# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for embedding utils.""" import unittest import numpy as np import tensorflow as tf from feelvos.utils import embedding_utils if embedding_utils.USE_CORRELATION_COST: # pylint: disable=g-import-not-at-top from correlation_cost.python.ops import correlation_cost_op class EmbeddingUtilsTest(tf.test.TestCase): def test_pairwise_distances(self): x = np.arange(100, dtype=np.float32).reshape(20, 5) y = np.arange(100, 200, dtype=np.float32).reshape(20, 5) g = tf.Graph() with g.as_default(): with self.test_session(graph=g) as sess: x = tf.constant(x) y = tf.constant(y) d1 = embedding_utils.pairwise_distances(x, y) d2 = embedding_utils.pairwise_distances2(x, y) d1_val, d2_val = sess.run([d1, d2]) self.assertAllClose(d1_val, d2_val) @unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, 'depends on correlation_cost') def test_correlation_cost_one_dimensional(self): a = np.array([[[[1.0], [2.0]], [[3.0], [4.0]]]]) b = np.array([[[[2.0], [1.0]], [[4.0], [3.0]]]]) g = tf.Graph() with g.as_default(): with self.test_session(graph=g) as sess: c = correlation_cost_op.correlation_cost( a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1, pad=1) c = tf.squeeze(c, axis=0) c_val = sess.run(c) self.assertAllEqual(c_val.shape, (2, 2, 9)) for y in range(2): for x in range(2): for dy in range(-1, 2): for dx in range(-1, 2): a_slice = a[0, y, x, 0] if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: b_slice = 0 else: b_slice = b[0, y + dy, x + dx, 0] expected = a_slice * b_slice dy0 = dy + 1 dx0 = dx + 1 self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected) @unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, 'depends on correlation_cost') def test_correlation_cost_two_dimensional(self): a = np.array([[[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]]) b = np.array([[[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]]) g = tf.Graph() with g.as_default(): with self.test_session(graph=g) as sess: c = correlation_cost_op.correlation_cost( a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1, pad=1) c = tf.squeeze(c, axis=0) c_val = sess.run(c) self.assertAllEqual(c_val.shape, (2, 2, 9)) for y in range(2): for x in range(2): for dy in range(-1, 2): for dx in range(-1, 2): a_slice = a[0, y, x, :] if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: b_slice = 0 else: b_slice = b[0, y + dy, x + dx, :] expected = (a_slice * b_slice).mean() dy0 = dy + 1 dx0 = dx + 1 self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected) @unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, 'depends on correlation_cost') def test_local_pairwise_distances_one_dimensional(self): a = np.array([[[1.0], [2.0]], [[3.0], [4.0]]]) b = np.array([[[2.0], [1.0]], [[4.0], [3.0]]]) g = tf.Graph() with g.as_default(): with self.test_session(graph=g) as sess: a_tf = tf.constant(a, dtype=tf.float32) b_tf = tf.constant(b, dtype=tf.float32) d = embedding_utils.local_pairwise_distances(a_tf, b_tf, max_distance=1) d_val = sess.run(d) for y in range(2): for x in range(2): for dy in range(-1, 2): for dx in range(-1, 2): a_slice = a[y, x, 0] if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: expected = np.float('inf') else: b_slice = b[y + dy, x + dx, 0] expected = (a_slice - b_slice) ** 2 dy0 = dy + 1 dx0 = dx + 1 self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected) @unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, 'depends on correlation_cost') def test_local_pairwise_distances_shape(self): a = np.zeros((4, 5, 2)) b = np.zeros((4, 5, 2)) g = tf.Graph() with g.as_default(): with self.test_session(graph=g) as sess: a_tf = tf.constant(a, dtype=tf.float32) b_tf = tf.constant(b, dtype=tf.float32) d = embedding_utils.local_pairwise_distances(a_tf, b_tf, max_distance=4) d_val = sess.run(d) self.assertAllEqual(d_val.shape, (4, 5, 81)) @unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, 'depends on correlation_cost') def test_local_pairwise_distances_two_dimensional(self): a = np.array([[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]) b = np.array([[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]) g = tf.Graph() with g.as_default(): with self.test_session(graph=g) as sess: a_tf = tf.constant(a, dtype=tf.float32) b_tf = tf.constant(b, dtype=tf.float32) d = embedding_utils.local_pairwise_distances(a_tf, b_tf, max_distance=1) d_val = sess.run(d) for y in range(2): for x in range(2): for dy in range(-1, 2): for dx in range(-1, 2): a_slice = a[y, x, :] if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: expected = np.float('inf') else: b_slice = b[y + dy, x + dx, :] expected = ((a_slice - b_slice) ** 2).sum() dy0 = dy + 1 dx0 = dx + 1 self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected) @unittest.skipIf(not embedding_utils.USE_CORRELATION_COST, 'depends on correlation_cost') def test_local_previous_frame_nearest_neighbor_features_per_object(self): prev_frame_embedding = np.array([[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]) / 10 query_embedding = np.array([[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]) / 10 prev_frame_labels = np.array([[[0], [1]], [[1], [0]]]) gt_ids = np.array([0, 1]) g = tf.Graph() with g.as_default(): with self.test_session(graph=g) as sess: prev_frame_embedding_tf = tf.constant(prev_frame_embedding, dtype=tf.float32) query_embedding_tf = tf.constant(query_embedding, dtype=tf.float32) embu = embedding_utils dists = ( embu.local_previous_frame_nearest_neighbor_features_per_object( prev_frame_embedding_tf, query_embedding_tf, prev_frame_labels, gt_ids, max_distance=1)) dists = tf.squeeze(dists, axis=4) dists = tf.squeeze(dists, axis=0) dists_val = sess.run(dists) for obj_id in gt_ids: for y in range(2): for x in range(2): curr_min = 1.0 for dy in range(-1, 2): for dx in range(-1, 2): # Attention: here we shift the prev frame embedding, # not the query. if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: continue if prev_frame_labels[y + dy, x + dx, 0] != obj_id: continue prev_frame_slice = prev_frame_embedding[y + dy, x + dx, :] query_frame_slice = query_embedding[y, x, :] v_unnorm = ((prev_frame_slice - query_frame_slice) ** 2).sum() v = ((1.0 / (1.0 + np.exp(-v_unnorm))) - 0.5) * 2 curr_min = min(curr_min, v) expected = curr_min self.assertAlmostEqual(dists_val[y, x, obj_id], expected, places=5) if __name__ == '__main__': tf.test.main()