# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the Domain Adaptation via Style Transfer (PixelDA) model components. A number of details in the implementation make reference to one of the following works: - "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks"" https://arxiv.org/abs/1511.06434 This paper makes several architecture recommendations: 1. Use strided convs in discriminator, fractional-strided convs in generator 2. batchnorm everywhere 3. remove fully connected layers for deep models 4. ReLu for all layers in generator, except tanh on output 5. LeakyReLu for everything in discriminator """ import functools import math # Dependency imports import numpy as np import tensorflow as tf slim = tf.contrib.slim from domain_adaptation.pixel_domain_adaptation import pixelda_task_towers def create_model(hparams, target_images, source_images=None, source_labels=None, is_training=False, noise=None, num_classes=None): """Create a GAN model. Arguments: hparams: HParam object specifying model params target_images: A `Tensor` of size [batch_size, height, width, channels]. It is assumed that the images are [-1, 1] normalized. source_images: A `Tensor` of size [batch_size, height, width, channels]. It is assumed that the images are [-1, 1] normalized. source_labels: A `Tensor` of size [batch_size] of categorical labels between [0, num_classes] is_training: whether model is currently training noise: If None, model generates its own noise. Otherwise use provided. num_classes: Number of classes for classification Returns: end_points dict with model outputs Raises: ValueError: unknown hparams.arch setting """ if num_classes is None and hparams.arch in ['resnet', 'simple']: raise ValueError('Num classes must be provided to create task classifier') if target_images.dtype != tf.float32: raise ValueError('target_images must be tf.float32 and [-1, 1] normalized.') if source_images is not None and source_images.dtype != tf.float32: raise ValueError('source_images must be tf.float32 and [-1, 1] normalized.') ########################### # Create latent variables # ########################### latent_vars = dict() if hparams.noise_channel: noise_shape = [hparams.batch_size, hparams.noise_dims] if noise is not None: assert noise.shape.as_list() == noise_shape tf.logging.info('Using provided noise') else: tf.logging.info('Using random noise') noise = tf.random_uniform( shape=noise_shape, minval=-1, maxval=1, dtype=tf.float32, name='random_noise') latent_vars['noise'] = noise #################### # Create generator # #################### with slim.arg_scope( [slim.conv2d, slim.conv2d_transpose, slim.fully_connected], normalizer_params=batch_norm_params(is_training, hparams.batch_norm_decay), weights_initializer=tf.random_normal_initializer( stddev=hparams.normal_init_std), weights_regularizer=tf.contrib.layers.l2_regularizer( hparams.weight_decay)): with slim.arg_scope([slim.conv2d], padding='SAME'): if hparams.arch == 'dcgan': end_points = dcgan( target_images, latent_vars, hparams, scope='generator') elif hparams.arch == 'resnet': end_points = resnet_generator( source_images, target_images.shape.as_list()[1:4], hparams=hparams, latent_vars=latent_vars) elif hparams.arch == 'residual_interpretation': end_points = residual_interpretation_generator( source_images, is_training=is_training, hparams=hparams) elif hparams.arch == 'simple': end_points = simple_generator( source_images, target_images, is_training=is_training, hparams=hparams, latent_vars=latent_vars) elif hparams.arch == 'identity': # Pass through unmodified, besides changing # channels # Used to calculate baseline numbers # Also set `generator_steps=0` for baseline if hparams.generator_steps: raise ValueError('Must set generator_steps=0 for identity arch. Is %s' % hparams.generator_steps) transferred_images = source_images source_channels = source_images.shape.as_list()[-1] target_channels = target_images.shape.as_list()[-1] if source_channels == 1 and target_channels == 3: transferred_images = tf.tile(source_images, [1, 1, 1, 3]) if source_channels == 3 and target_channels == 1: transferred_images = tf.image.rgb_to_grayscale(source_images) end_points = {'transferred_images': transferred_images} else: raise ValueError('Unknown architecture: %s' % hparams.arch) ##################### # Domain Classifier # ##################### if hparams.arch in [ 'dcgan', 'resnet', 'residual_interpretation', 'simple', 'identity', ]: # Add a discriminator for these architectures end_points['transferred_domain_logits'] = predict_domain( end_points['transferred_images'], hparams, is_training=is_training, reuse=False) end_points['target_domain_logits'] = predict_domain( target_images, hparams, is_training=is_training, reuse=True) ################### # Task Classifier # ################### if hparams.task_tower != 'none' and hparams.arch in [ 'resnet', 'residual_interpretation', 'simple', 'identity', ]: with tf.variable_scope('discriminator'): with tf.variable_scope('task_tower'): end_points['source_task_logits'], end_points[ 'source_quaternion'] = pixelda_task_towers.add_task_specific_model( source_images, hparams, num_classes=num_classes, is_training=is_training, reuse_private=False, private_scope='source_task_classifier', reuse_shared=False) end_points['transferred_task_logits'], end_points[ 'transferred_quaternion'] = ( pixelda_task_towers.add_task_specific_model( end_points['transferred_images'], hparams, num_classes=num_classes, is_training=is_training, reuse_private=False, private_scope='transferred_task_classifier', reuse_shared=True)) end_points['target_task_logits'], end_points[ 'target_quaternion'] = pixelda_task_towers.add_task_specific_model( target_images, hparams, num_classes=num_classes, is_training=is_training, reuse_private=True, private_scope='transferred_task_classifier', reuse_shared=True) # Remove any endpoints with None values return dict((k, v) for k, v in end_points.iteritems() if v is not None) def batch_norm_params(is_training, batch_norm_decay): return { 'is_training': is_training, # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': 0.001, } def lrelu(x, leakiness=0.2): """Relu, with optional leaky support.""" return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu') def upsample(net, num_filters, scale=2, method='resize_conv', scope=None): """Performs spatial upsampling of the given features. Args: net: A `Tensor` of shape [batch_size, height, width, filters]. num_filters: The number of output filters. scale: The scale of the upsampling. Must be a positive integer greater or equal to two. method: The method by which the features are upsampled. Valid options include 'resize_conv' and 'conv2d_transpose'. scope: An optional variable scope. Returns: A new set of features of shape [batch_size, height*scale, width*scale, num_filters]. Raises: ValueError: if `method` is not valid or """ if scale < 2: raise ValueError('scale must be greater or equal to two.') with tf.variable_scope(scope, 'upsample', [net]): if method == 'resize_conv': net = tf.image.resize_nearest_neighbor( net, [net.shape.as_list()[1] * scale, net.shape.as_list()[2] * scale], align_corners=True, name='resize') return slim.conv2d(net, num_filters, stride=1, scope='conv') elif method == 'conv2d_transpose': return slim.conv2d_transpose(net, num_filters, scope='deconv') else: raise ValueError('Upsample method [%s] was not recognized.' % method) def project_latent_vars(hparams, proj_shape, latent_vars, combine_method='sum'): """Generate noise and project to input volume size. Args: hparams: The hyperparameter HParams struct. proj_shape: Shape to project noise (not including batch size). latent_vars: dictionary of `'key': Tensor of shape [batch_size, N]` combine_method: How to combine the projected values. sum = project to volume then sum concat = concatenate along last dimension (i.e. channel) Returns: If combine_method=sum, a `Tensor` of size `hparams.projection_shape` If combine_method=concat and there are N latent vars, a `Tensor` of size `hparams.projection_shape`, with the last channel multiplied by N Raises: ValueError: combine_method is not one of sum/concat """ values = [] for var in latent_vars: with tf.variable_scope(var): # Project & reshape noise to a HxWxC input projected = slim.fully_connected( latent_vars[var], np.prod(proj_shape), activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm) values.append(tf.reshape(projected, [hparams.batch_size] + proj_shape)) if combine_method == 'sum': result = values[0] for value in values[1:]: result += value elif combine_method == 'concat': # Concatenate along last axis result = tf.concat(values, len(proj_shape)) else: raise ValueError('Unknown combine_method %s' % combine_method) tf.logging.info('Latent variables projected to size %s volume', result.shape) return result def resnet_block(net, hparams): """Create a resnet block.""" net_in = net net = slim.conv2d( net, hparams.resnet_filters, stride=1, normalizer_fn=slim.batch_norm, activation_fn=tf.nn.relu) net = slim.conv2d( net, hparams.resnet_filters, stride=1, normalizer_fn=slim.batch_norm, activation_fn=None) if hparams.resnet_residuals: net += net_in return net def resnet_stack(images, output_shape, hparams, scope=None): """Create a resnet style transfer block. Args: images: [batch-size, height, width, channels] image tensor to feed as input output_shape: output image shape in form [height, width, channels] hparams: hparams objects scope: Variable scope Returns: Images after processing with resnet blocks. """ end_points = {} if hparams.noise_channel: # separate the noise for visualization end_points['noise'] = images[:, :, :, -1] assert images.shape.as_list()[1:3] == output_shape[0:2] with tf.variable_scope(scope, 'resnet_style_transfer', [images]): with slim.arg_scope( [slim.conv2d], normalizer_fn=slim.batch_norm, kernel_size=[hparams.generator_kernel_size] * 2, stride=1): net = slim.conv2d( images, hparams.resnet_filters, normalizer_fn=None, activation_fn=tf.nn.relu) for block in range(hparams.resnet_blocks): net = resnet_block(net, hparams) end_points['resnet_block_{}'.format(block)] = net net = slim.conv2d( net, output_shape[-1], kernel_size=[1, 1], normalizer_fn=None, activation_fn=tf.nn.tanh, scope='conv_out') end_points['transferred_images'] = net return net, end_points def predict_domain(images, hparams, is_training=False, reuse=False, scope='discriminator'): """Creates a discriminator for a GAN. Args: images: A `Tensor` of size [batch_size, height, width, channels]. It is assumed that the images are centered between -1 and 1. hparams: hparam object with params for discriminator is_training: Specifies whether or not we're training or testing. reuse: Whether to reuse variable scope scope: An optional variable_scope. Returns: [batch size, 1] - logit output of discriminator. """ with tf.variable_scope(scope, 'discriminator', [images], reuse=reuse): lrelu_partial = functools.partial(lrelu, leakiness=hparams.lrelu_leakiness) with slim.arg_scope( [slim.conv2d], kernel_size=[hparams.discriminator_kernel_size] * 2, activation_fn=lrelu_partial, stride=2, normalizer_fn=slim.batch_norm): def add_noise(hidden, scope_num=None): if scope_num: hidden = slim.dropout( hidden, hparams.discriminator_dropout_keep_prob, is_training=is_training, scope='dropout_%s' % scope_num) if hparams.discriminator_noise_stddev == 0: return hidden return hidden + tf.random_normal( hidden.shape.as_list(), mean=0.0, stddev=hparams.discriminator_noise_stddev) # As per the recommendation of the DCGAN paper, we don't use batch norm # on the discriminator input (https://arxiv.org/pdf/1511.06434v2.pdf). if hparams.discriminator_image_noise: images = add_noise(images) net = slim.conv2d( images, hparams.num_discriminator_filters, normalizer_fn=None, stride=hparams.discriminator_first_stride, scope='conv1_stride%s' % hparams.discriminator_first_stride) net = add_noise(net, 1) block_id = 2 # Repeatedly stack # discriminator_conv_block_size-1 conv layers with stride 1 # followed by a stride 2 layer # Add (optional) noise at every point while net.shape.as_list()[1] > hparams.projection_shape_size: num_filters = int(hparams.num_discriminator_filters * (hparams.discriminator_filter_factor**(block_id - 1))) for conv_id in range(1, hparams.discriminator_conv_block_size): net = slim.conv2d( net, num_filters, stride=1, scope='conv_%s_%s' % (block_id, conv_id)) if hparams.discriminator_do_pooling: net = slim.conv2d( net, num_filters, scope='conv_%s_prepool' % block_id) net = slim.avg_pool2d( net, kernel_size=[2, 2], stride=2, scope='pool_%s' % block_id) else: net = slim.conv2d( net, num_filters, scope='conv_%s_stride2' % block_id) net = add_noise(net, block_id) block_id += 1 net = slim.flatten(net) net = slim.fully_connected( net, 1, # Models with BN here generally produce noise normalizer_fn=None, activation_fn=None, scope='fc_logit_out') # Returns logits! return net def dcgan_generator(images, output_shape, hparams, scope=None): """Transforms the visual style of the input images. Args: images: A `Tensor` of shape [batch_size, height, width, channels]. output_shape: A list or tuple of 3 elements: the output height, width and number of channels. hparams: hparams object with generator parameters scope: Scope to place generator inside Returns: A `Tensor` of shape [batch_size, height, width, output_channels] which represents the result of style transfer. Raises: ValueError: If `output_shape` is not a list or tuple or if it doesn't have three elements or if `output_shape` or `images` arent square. """ if not isinstance(output_shape, (tuple, list)): raise ValueError('output_shape must be a tuple or list.') elif len(output_shape) != 3: raise ValueError('output_shape must have three elements.') if output_shape[0] != output_shape[1]: raise ValueError('output_shape must be square') if images.shape.as_list()[1] != images.shape.as_list()[2]: raise ValueError('images height and width must match.') outdim = output_shape[0] indim = images.shape.as_list()[1] num_iterations = int(math.ceil(math.log(float(outdim) / float(indim), 2.0))) with slim.arg_scope( [slim.conv2d, slim.conv2d_transpose], kernel_size=[hparams.generator_kernel_size] * 2, stride=2): with tf.variable_scope(scope or 'generator'): net = images # Repeatedly halve # filters until = hparams.decode_filters in last layer for i in range(num_iterations): num_filters = hparams.num_decoder_filters * 2**(num_iterations - i - 1) net = slim.conv2d_transpose(net, num_filters, scope='deconv_%s' % i) # Crop down to desired size (e.g. 32x32 -> 28x28) dif = net.shape.as_list()[1] - outdim low = dif / 2 high = net.shape.as_list()[1] - low net = net[:, low:high, low:high, :] # No batch norm on generator output net = slim.conv2d( net, output_shape[2], kernel_size=[1, 1], stride=1, normalizer_fn=None, activation_fn=tf.tanh, scope='conv_out') return net def dcgan(target_images, latent_vars, hparams, scope='dcgan'): """Creates the PixelDA model. Args: target_images: A `Tensor` of shape [batch_size, height, width, 3] sampled from the image domain to which we want to transfer. latent_vars: dictionary of 'key': Tensor of shape [batch_size, N] hparams: The hyperparameter map. scope: Surround generator component with this scope Returns: A dictionary of model outputs. """ proj_shape = [ hparams.projection_shape_size, hparams.projection_shape_size, hparams.projection_shape_channels ] source_volume = project_latent_vars( hparams, proj_shape, latent_vars, combine_method='concat') ################################################### # Transfer the source images to the target style. # ################################################### with tf.variable_scope(scope, 'generator', [target_images]): transferred_images = dcgan_generator( source_volume, output_shape=target_images.shape.as_list()[1:4], hparams=hparams) assert transferred_images.shape.as_list() == target_images.shape.as_list() return {'transferred_images': transferred_images} def resnet_generator(images, output_shape, hparams, latent_vars=None): """Creates a ResNet-based generator. Args: images: A `Tensor` of shape [batch_size, height, width, num_channels] sampled from the image domain from which we want to transfer output_shape: A length-3 array indicating the height, width and channels of the output. hparams: The hyperparameter map. latent_vars: dictionary of 'key': Tensor of shape [batch_size, N] Returns: A dictionary of model outputs. """ with tf.variable_scope('generator'): if latent_vars: noise_channel = project_latent_vars( hparams, proj_shape=images.shape.as_list()[1:3] + [1], latent_vars=latent_vars, combine_method='concat') images = tf.concat([images, noise_channel], 3) transferred_images, end_points = resnet_stack( images, output_shape=output_shape, hparams=hparams, scope='resnet_stack') end_points['transferred_images'] = transferred_images return end_points def residual_interpretation_block(images, hparams, scope): """Learns a residual image which is added to the incoming image. Args: images: A `Tensor` of size [batch_size, height, width, 3] hparams: The hyperparameters struct. scope: The name of the variable op scope. Returns: The updated images. """ with tf.variable_scope(scope): with slim.arg_scope( [slim.conv2d], normalizer_fn=None, kernel_size=[hparams.generator_kernel_size] * 2): net = images for _ in range(hparams.res_int_convs): net = slim.conv2d( net, hparams.res_int_filters, activation_fn=tf.nn.relu) net = slim.conv2d(net, 3, activation_fn=tf.nn.tanh) # Add the residual images += net # Clip the output images = tf.maximum(images, -1.0) images = tf.minimum(images, 1.0) return images def residual_interpretation_generator(images, is_training, hparams, latent_vars=None): """Creates a generator producing purely residual transformations. A residual generator differs from the resnet generator in that each 'block' of the residual generator produces a residual image. Consequently, the 'progress' of the model generation process can be directly observed at inference time, making it easier to diagnose and understand. Args: images: A `Tensor` of shape [batch_size, height, width, num_channels] sampled from the image domain from which we want to transfer. It is assumed that the images are centered between -1 and 1. is_training: whether or not the model is training. hparams: The hyperparameter map. latent_vars: dictionary of 'key': Tensor of shape [batch_size, N] Returns: A dictionary of model outputs. """ end_points = {} with tf.variable_scope('generator'): if latent_vars: projected_latent = project_latent_vars( hparams, proj_shape=images.shape.as_list()[1:3] + [images.shape.as_list()[-1]], latent_vars=latent_vars, combine_method='sum') images += projected_latent with tf.variable_scope(None, 'residual_style_transfer', [images]): for i in range(hparams.res_int_blocks): images = residual_interpretation_block(images, hparams, 'residual_%d' % i) end_points['transferred_images_%d' % i] = images end_points['transferred_images'] = images return end_points def simple_generator(source_images, target_images, is_training, hparams, latent_vars): """Simple generator architecture (stack of convs) for trying small models.""" end_points = {} with tf.variable_scope('generator'): feed_source_images = source_images if latent_vars: projected_latent = project_latent_vars( hparams, proj_shape=source_images.shape.as_list()[1:3] + [1], latent_vars=latent_vars, combine_method='concat') feed_source_images = tf.concat([source_images, projected_latent], 3) end_points = {} ################################################### # Transfer the source images to the target style. # ################################################### with slim.arg_scope( [slim.conv2d], normalizer_fn=slim.batch_norm, stride=1, kernel_size=[hparams.generator_kernel_size] * 2): net = feed_source_images # N convolutions for i in range(1, hparams.simple_num_conv_layers): normalizer_fn = None if i != 0: normalizer_fn = slim.batch_norm net = slim.conv2d( net, hparams.simple_conv_filters, normalizer_fn=normalizer_fn, activation_fn=tf.nn.relu) # Project back to right # image channels net = slim.conv2d( net, target_images.shape.as_list()[-1], kernel_size=[1, 1], stride=1, normalizer_fn=None, activation_fn=tf.tanh, scope='conv_out') transferred_images = net assert transferred_images.shape.as_list() == target_images.shape.as_list() end_points['transferred_images'] = transferred_images return end_points