# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script to evaluate a trained Attention OCR model. A simple usage example: python eval.py """ import tensorflow as tf from tensorflow.contrib import slim from tensorflow import app from tensorflow.python.platform import flags import data_provider import common_flags FLAGS = flags.FLAGS common_flags.define() # yapf: disable flags.DEFINE_integer('num_batches', 100, 'Number of batches to run eval for.') flags.DEFINE_string('eval_log_dir', '/tmp/attention_ocr/eval', 'Directory where the evaluation results are saved to.') flags.DEFINE_integer('eval_interval_secs', 60, 'Frequency in seconds to run evaluations.') flags.DEFINE_integer('number_of_steps', None, 'Number of times to run evaluation.') # yapf: enable def main(_): if not tf.gfile.Exists(FLAGS.eval_log_dir): tf.gfile.MakeDirs(FLAGS.eval_log_dir) dataset = common_flags.create_dataset(split_name=FLAGS.split_name) model = common_flags.create_model(dataset.num_char_classes, dataset.max_sequence_length, dataset.num_of_views, dataset.null_code) data = data_provider.get_data( dataset, FLAGS.batch_size, augment=False, central_crop_size=common_flags.get_crop_size()) endpoints = model.create_base(data.images, labels_one_hot=None) model.create_loss(data, endpoints) eval_ops = model.create_summaries( data, endpoints, dataset.charset, is_training=False) slim.get_or_create_global_step() session_config = tf.ConfigProto(device_count={"GPU": 0}) slim.evaluation.evaluation_loop( master=FLAGS.master, checkpoint_dir=FLAGS.train_log_dir, logdir=FLAGS.eval_log_dir, eval_op=eval_ops, num_evals=FLAGS.num_batches, eval_interval_secs=FLAGS.eval_interval_secs, max_number_of_evaluations=FLAGS.number_of_steps, session_config=session_config) if __name__ == '__main__': app.run()