![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen) ![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg) Train Wide-ResNet, Shake-Shake and ShakeDrop models on CIFAR-10 and CIFAR-100 dataset with AutoAugment. The CIFAR-10/CIFAR-100 data can be downloaded from: https://www.cs.toronto.edu/~kriz/cifar.html. Use the Python version instead of the binary version. The code replicates the results from Tables 1 and 2 on CIFAR-10/100 with the following models: Wide-ResNet-28-10, Shake-Shake (26 2x32d), Shake-Shake (26 2x96d) and PyramidNet+ShakeDrop. Related papers: AutoAugment: Learning Augmentation Policies from Data https://arxiv.org/abs/1805.09501 Wide Residual Networks https://arxiv.org/abs/1605.07146 Shake-Shake regularization https://arxiv.org/abs/1705.07485 ShakeDrop regularization https://arxiv.org/abs/1802.02375 Settings: CIFAR-10 Model | Learning Rate | Weight Decay | Num. Epochs | Batch Size ---------------------- | ------------- | ------------ | ----------- | ---------- Wide-ResNet-28-10 | 0.1 | 5e-4 | 200 | 128 Shake-Shake (26 2x32d) | 0.01 | 1e-3 | 1800 | 128 Shake-Shake (26 2x96d) | 0.01 | 1e-3 | 1800 | 128 PyramidNet + ShakeDrop | 0.05 | 5e-5 | 1800 | 64 Prerequisite: 1. Install TensorFlow. Be sure to run the code using python2 and not python3. 2. Download CIFAR-10/CIFAR-100 dataset. ```shell curl -o cifar-10-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz curl -o cifar-100-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz ``` How to run: ```shell # cd to the your workspace. # Specify the directory where dataset is located using the data_path flag. # Note: User can split samples from training set into the eval set by changing train_size and validation_size. # For example, to train the Wide-ResNet-28-10 model on a GPU. python train_cifar.py --model_name=wrn \ --checkpoint_dir=/tmp/training \ --data_path=/tmp/data \ --dataset='cifar10' \ --use_cpu=0 ``` ## Contact for Issues * Barret Zoph, @barretzoph * Ekin Dogus Cubuk,