# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts PASCAL VOC 2012 data to TFRecord file format with Example protos. PASCAL VOC 2012 dataset is expected to have the following directory structure: + pascal_voc_seg - build_data.py - build_voc2012_data.py (current working directory). + VOCdevkit + VOC2012 + JPEGImages + SegmentationClass + ImageSets + Segmentation + tfrecord Image folder: ./VOCdevkit/VOC2012/JPEGImages Semantic segmentation annotations: ./VOCdevkit/VOC2012/SegmentationClass list folder: ./VOCdevkit/VOC2012/ImageSets/Segmentation This script converts data into sharded data files and save at tfrecord folder. The Example proto contains the following fields: image/encoded: encoded image content. image/filename: image filename. image/format: image file format. image/height: image height. image/width: image width. image/channels: image channels. image/segmentation/class/encoded: encoded semantic segmentation content. image/segmentation/class/format: semantic segmentation file format. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os.path import sys import build_data from six.moves import range import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('image_folder', './VOCdevkit/VOC2012/JPEGImages', 'Folder containing images.') tf.app.flags.DEFINE_string( 'semantic_segmentation_folder', './VOCdevkit/VOC2012/SegmentationClassRaw', 'Folder containing semantic segmentation annotations.') tf.app.flags.DEFINE_string( 'list_folder', './VOCdevkit/VOC2012/ImageSets/Segmentation', 'Folder containing lists for training and validation') tf.app.flags.DEFINE_string( 'output_dir', './tfrecord', 'Path to save converted SSTable of TensorFlow examples.') _NUM_SHARDS = 4 def _convert_dataset(dataset_split): """Converts the specified dataset split to TFRecord format. Args: dataset_split: The dataset split (e.g., train, test). Raises: RuntimeError: If loaded image and label have different shape. """ dataset = os.path.basename(dataset_split)[:-4] sys.stdout.write('Processing ' + dataset) filenames = [x.strip('\n') for x in open(dataset_split, 'r')] num_images = len(filenames) num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) image_reader = build_data.ImageReader('jpeg', channels=3) label_reader = build_data.ImageReader('png', channels=1) for shard_id in range(_NUM_SHARDS): output_filename = os.path.join( FLAGS.output_dir, '%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS)) with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: start_idx = shard_id * num_per_shard end_idx = min((shard_id + 1) * num_per_shard, num_images) for i in range(start_idx, end_idx): sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( i + 1, len(filenames), shard_id)) sys.stdout.flush() # Read the image. image_filename = os.path.join( FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format) image_data = tf.gfile.GFile(image_filename, 'rb').read() height, width = image_reader.read_image_dims(image_data) # Read the semantic segmentation annotation. seg_filename = os.path.join( FLAGS.semantic_segmentation_folder, filenames[i] + '.' + FLAGS.label_format) seg_data = tf.gfile.GFile(seg_filename, 'rb').read() seg_height, seg_width = label_reader.read_image_dims(seg_data) if height != seg_height or width != seg_width: raise RuntimeError('Shape mismatched between image and label.') # Convert to tf example. example = build_data.image_seg_to_tfexample( image_data, filenames[i], height, width, seg_data) tfrecord_writer.write(example.SerializeToString()) sys.stdout.write('\n') sys.stdout.flush() def main(unused_argv): dataset_splits = tf.gfile.Glob(os.path.join(FLAGS.list_folder, '*.txt')) for dataset_split in dataset_splits: _convert_dataset(dataset_split) if __name__ == '__main__': tf.app.run()