# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper for providing semantic segmentaion data. The SegmentationDataset class provides both images and annotations (semantic segmentation and/or instance segmentation) for TensorFlow. Currently, we support the following datasets: 1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/). PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects (e.g., bike, person, and so on) and leaves all the other semantic classes as one background class. The dataset contains 1464, 1449, and 1456 annotated images for the training, validation and test respectively. 2. Cityscapes dataset (https://www.cityscapes-dataset.com) The Cityscapes dataset contains 19 semantic labels (such as road, person, car, and so on) for urban street scenes. 3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K) The ADE20K dataset contains 150 semantic labels both urban street scenes and indoor scenes. References: M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman, The pascal visual object classes challenge a retrospective. IJCV, 2014. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban scene understanding," In Proc. of CVPR, 2016. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsing through ADE20K dataset", In Proc. of CVPR, 2017. """ import collections import os import tensorflow as tf from deeplab import common from deeplab import input_preprocess # Named tuple to describe the dataset properties. DatasetDescriptor = collections.namedtuple( 'DatasetDescriptor', [ 'splits_to_sizes', # Splits of the dataset into training, val and test. 'num_classes', # Number of semantic classes, including the # background class (if exists). For example, there # are 20 foreground classes + 1 background class in # the PASCAL VOC 2012 dataset. Thus, we set # num_classes=21. 'ignore_label', # Ignore label value. ]) _CITYSCAPES_INFORMATION = DatasetDescriptor( splits_to_sizes={'train_fine': 2975, 'train_coarse': 22973, 'trainval_fine': 3475, 'trainval_coarse': 23473, 'val_fine': 500, 'test_fine': 1525}, num_classes=19, ignore_label=255, ) _PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor( splits_to_sizes={ 'train': 1464, 'train_aug': 10582, 'trainval': 2913, 'val': 1449, }, num_classes=21, ignore_label=255, ) _ADE20K_INFORMATION = DatasetDescriptor( splits_to_sizes={ 'train': 20210, # num of samples in images/training 'val': 2000, # num of samples in images/validation }, num_classes=151, ignore_label=0, ) _DATASETS_INFORMATION = { 'cityscapes': _CITYSCAPES_INFORMATION, 'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION, 'ade20k': _ADE20K_INFORMATION, } # Default file pattern of TFRecord of TensorFlow Example. _FILE_PATTERN = '%s-*' def get_cityscapes_dataset_name(): return 'cityscapes' class Dataset(object): """Represents input dataset for deeplab model.""" def __init__(self, dataset_name, split_name, dataset_dir, batch_size, crop_size, min_resize_value=None, max_resize_value=None, resize_factor=None, min_scale_factor=1., max_scale_factor=1., scale_factor_step_size=0, model_variant=None, num_readers=1, is_training=False, should_shuffle=False, should_repeat=False): """Initializes the dataset. Args: dataset_name: Dataset name. split_name: A train/val Split name. dataset_dir: The directory of the dataset sources. batch_size: Batch size. crop_size: The size used to crop the image and label. min_resize_value: Desired size of the smaller image side. max_resize_value: Maximum allowed size of the larger image side. resize_factor: Resized dimensions are multiple of factor plus one. min_scale_factor: Minimum scale factor value. max_scale_factor: Maximum scale factor value. scale_factor_step_size: The step size from min scale factor to max scale factor. The input is randomly scaled based on the value of (min_scale_factor, max_scale_factor, scale_factor_step_size). model_variant: Model variant (string) for choosing how to mean-subtract the images. See feature_extractor.network_map for supported model variants. num_readers: Number of readers for data provider. is_training: Boolean, if dataset is for training or not. should_shuffle: Boolean, if should shuffle the input data. should_repeat: Boolean, if should repeat the input data. Raises: ValueError: Dataset name and split name are not supported. """ if dataset_name not in _DATASETS_INFORMATION: raise ValueError('The specified dataset is not supported yet.') self.dataset_name = dataset_name splits_to_sizes = _DATASETS_INFORMATION[dataset_name].splits_to_sizes if split_name not in splits_to_sizes: raise ValueError('data split name %s not recognized' % split_name) if model_variant is None: tf.logging.warning('Please specify a model_variant. See ' 'feature_extractor.network_map for supported model ' 'variants.') self.split_name = split_name self.dataset_dir = dataset_dir self.batch_size = batch_size self.crop_size = crop_size self.min_resize_value = min_resize_value self.max_resize_value = max_resize_value self.resize_factor = resize_factor self.min_scale_factor = min_scale_factor self.max_scale_factor = max_scale_factor self.scale_factor_step_size = scale_factor_step_size self.model_variant = model_variant self.num_readers = num_readers self.is_training = is_training self.should_shuffle = should_shuffle self.should_repeat = should_repeat self.num_of_classes = _DATASETS_INFORMATION[self.dataset_name].num_classes self.ignore_label = _DATASETS_INFORMATION[self.dataset_name].ignore_label def _parse_function(self, example_proto): """Function to parse the example proto. Args: example_proto: Proto in the format of tf.Example. Returns: A dictionary with parsed image, label, height, width and image name. Raises: ValueError: Label is of wrong shape. """ # Currently only supports jpeg and png. # Need to use this logic because the shape is not known for # tf.image.decode_image and we rely on this info to # extend label if necessary. def _decode_image(content, channels): return tf.cond( tf.image.is_jpeg(content), lambda: tf.image.decode_jpeg(content, channels), lambda: tf.image.decode_png(content, channels)) features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/filename': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/height': tf.FixedLenFeature((), tf.int64, default_value=0), 'image/width': tf.FixedLenFeature((), tf.int64, default_value=0), 'image/segmentation/class/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/segmentation/class/format': tf.FixedLenFeature((), tf.string, default_value='png'), } parsed_features = tf.parse_single_example(example_proto, features) image = _decode_image(parsed_features['image/encoded'], channels=3) label = None if self.split_name != common.TEST_SET: label = _decode_image( parsed_features['image/segmentation/class/encoded'], channels=1) image_name = parsed_features['image/filename'] if image_name is None: image_name = tf.constant('') sample = { common.IMAGE: image, common.IMAGE_NAME: image_name, common.HEIGHT: parsed_features['image/height'], common.WIDTH: parsed_features['image/width'], } if label is not None: if label.get_shape().ndims == 2: label = tf.expand_dims(label, 2) elif label.get_shape().ndims == 3 and label.shape.dims[2] == 1: pass else: raise ValueError('Input label shape must be [height, width], or ' '[height, width, 1].') label.set_shape([None, None, 1]) sample[common.LABELS_CLASS] = label return sample def _preprocess_image(self, sample): """Preprocesses the image and label. Args: sample: A sample containing image and label. Returns: sample: Sample with preprocessed image and label. Raises: ValueError: Ground truth label not provided during training. """ image = sample[common.IMAGE] label = sample[common.LABELS_CLASS] original_image, image, label = input_preprocess.preprocess_image_and_label( image=image, label=label, crop_height=self.crop_size[0], crop_width=self.crop_size[1], min_resize_value=self.min_resize_value, max_resize_value=self.max_resize_value, resize_factor=self.resize_factor, min_scale_factor=self.min_scale_factor, max_scale_factor=self.max_scale_factor, scale_factor_step_size=self.scale_factor_step_size, ignore_label=self.ignore_label, is_training=self.is_training, model_variant=self.model_variant) sample[common.IMAGE] = image if not self.is_training: # Original image is only used during visualization. sample[common.ORIGINAL_IMAGE] = original_image if label is not None: sample[common.LABEL] = label # Remove common.LABEL_CLASS key in the sample since it is only used to # derive label and not used in training and evaluation. sample.pop(common.LABELS_CLASS, None) return sample def get_one_shot_iterator(self): """Gets an iterator that iterates across the dataset once. Returns: An iterator of type tf.data.Iterator. """ files = self._get_all_files() dataset = ( tf.data.TFRecordDataset(files, num_parallel_reads=self.num_readers) .map(self._parse_function, num_parallel_calls=self.num_readers) .map(self._preprocess_image, num_parallel_calls=self.num_readers)) if self.should_shuffle: dataset = dataset.shuffle(buffer_size=100) if self.should_repeat: dataset = dataset.repeat() # Repeat forever for training. else: dataset = dataset.repeat(1) dataset = dataset.batch(self.batch_size).prefetch(self.batch_size) return dataset.make_one_shot_iterator() def _get_all_files(self): """Gets all the files to read data from. Returns: A list of input files. """ file_pattern = _FILE_PATTERN file_pattern = os.path.join(self.dataset_dir, file_pattern % self.split_name) return tf.gfile.Glob(file_pattern)