# Copyright 2018 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division import tensorflow as tf from contextlib import contextmanager from tensorflow.python.ops import variable_scope # sanity global state to ensure non recursive. _is_variable_replacing = [False] def in_variable_replace_scope(): return _is_variable_replacing[0] @contextmanager def variable_replace(replacements, no_new=True): """ A context manager that replaces variables. This is a context manager that replaces all calls to get_variable with the variable in replacements. This function does not support recursive application. Args: replacements: dict dictionary mapping a variable to replace (the key), with the variable one wants to replace this variable with (the value). no_new: bool raise an error if variables were created. This is for sanity checking. Raises: ValueError: if a new variable or not all the replacements are used. """ # TODO(lmetz) This function is a bit scary, as it relies on monkey patching # the call to get_variable. Ideally this can be done with variable_scope's # custom_getter attribute, but when initially writing this that was not # avalible. replacements = {k: v for k, v in replacements.items() if not k == v} init_vars = tf.trainable_variables() old_get_variable = variable_scope.get_variable old_tf_get_variable = tf.get_variable names_replace = {} has_replaced_names = [] tf.logging.vlog(2, "Trying to replace") for k, v in replacements.items(): tf.logging.vlog(2, k.name + " >> " + v.name) tf.logging.vlog(2, "===") for k, v in replacements.items(): strip_name = k.name.replace("/read:0", "") strip_name = strip_name.replace(":0", "") names_replace[strip_name] = v # TODO(lmetz) is there a cleaner way to do this? def new_get_variable(name, *args, **kwargs): #print "Monkeypatch get variable run with name:", name n = tf.get_variable_scope().name + "/" + name #print "Monkeypatch get variable run with name:", n if n in names_replace: has_replaced_names.append(n) return names_replace[n] else: return old_get_variable(name, *args, **kwargs) # perform the monkey patch if _is_variable_replacing[0] == True: raise ValueError("No recursive calling to variable replace allowed.") variable_scope.get_variable = new_get_variable tf.get_variable = new_get_variable _is_variable_replacing[0] = True yield if set(has_replaced_names) != set(names_replace.keys()): print "Didn't use all replacements" print "replaced variables that are not requested??" print "===" for n in list(set(has_replaced_names) - set(names_replace.keys())): print n print "Missed replacing variables" print "===" for n in list(set(names_replace.keys()) - set(has_replaced_names)): print n, "==>", names_replace[n].name raise ValueError("Fix this -- see stderr") # undo the monkey patch tf.get_variable = old_tf_get_variable variable_scope.get_variable = old_get_variable _is_variable_replacing[0] = False final_vars = tf.trainable_variables() assert set(init_vars) == set(final_vars), "trainable variables changed"