#!/usr/bin/python # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import csv import os import argparse """ usage: Processes all .jpg, .png, .bmp and .gif files found in the specified directory and its subdirectories. --PATH ( Path to directory of images or path to directory with subdirectory of images). e.g Path/To/Directory/ --Model_PATH path to the tensorflow model """ parser = argparse.ArgumentParser(description='Crystal Detection Program') parser.add_argument('--PATH', type=str, help='path to image directory. Recursively finds all image files in directory and sub directories') # path to image directory or containing sub directories. parser.add_argument('--MODEL_PATH', type=str, default='./savedmodel',help='the file path to the tensorflow model ') args = vars(parser.parse_args()) PATH = args['PATH'] model_path = args['MODEL_PATH'] crystal_images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if os.path.splitext(f)[1] in ['.jpg','png','bmp','gif']] size = len(crystal_images) def load_images(file_list): for i in file_list: files = open(i,'rb') yield {"image_bytes":[files.read()]},i iterator = load_images(crystal_images) with open(PATH +'results.csv', 'w') as csvfile: Writer = csv.writer(csvfile, delimiter=' ',quotechar=' ', quoting=csv.QUOTE_MINIMAL) predicter= tf.contrib.predictor.from_saved_model(model_path) dic = {} k = 0 for _ in range(size): data,name = next(iterator) results = predicter(data) vals =results['scores'][0] classes = results['classes'][0] dictionary = dict(zip(classes,vals)) print('Image path: '+ name+' Crystal: '+str(dictionary[b'Crystals'])+' Other: '+ str(dictionary[b'Other'])+' Precipitate: '+ str(dictionary[b'Precipitate'])+' Clear: '+ str(dictionary[b'Clear'])) Writer.writerow(['Image path: '+ name,'Crystal: '+str(dictionary[b'Crystals']),'Other: '+ str(dictionary[b'Other']),'Precipitate: '+ str(dictionary[b'Precipitate']),'Clear: '+ str(dictionary[b'Clear'])])