# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions and classes related to training performance.""" import tensorflow as tf def configure_optimizer(optimizer, use_float16=False, use_graph_rewrite=False, loss_scale="dynamic"): """Configures optimizer object with performance options.""" if use_float16: # Wraps optimizer with a LossScaleOptimizer. This is done automatically # in compile() with the "mixed_float16" policy, but since we do not call # compile(), we must wrap the optimizer manually. optimizer = ( tf.keras.mixed_precision.experimental.LossScaleOptimizer( optimizer, loss_scale=loss_scale)) if use_graph_rewrite: # Note: the model dtype must be 'float32', which will ensure # tf.ckeras.mixed_precision and # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double # up. optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite( optimizer) return optimizer def set_mixed_precision_policy(dtype, loss_scale=None): """Sets mix precision policy.""" if dtype == tf.float16: policy = tf.keras.mixed_precision.experimental.Policy( 'mixed_float16', loss_scale=loss_scale) tf.keras.mixed_precision.experimental.set_policy(policy) elif dtype == tf.bfloat16: policy = tf.keras.mixed_precision.experimental.Policy( 'mixed_bfloat16') tf.keras.mixed_precision.experimental.set_policy(policy) elif dtype == tf.float32: tf.keras.mixed_precision.experimental.set_policy('float32') else: raise ValueError("Unexpected dtype: %s" % dtype)