# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Loads dataset for the BERT pretraining task.""" from typing import Mapping, Optional import tensorflow as tf from official.core import input_reader class BertPretrainDataLoader: """A class to load dataset for bert pretraining task.""" def __init__(self, params): """Inits `BertPretrainDataLoader` class. Args: params: A `BertPretrainDataConfig` object. """ self._params = params self._seq_length = params.seq_length self._max_predictions_per_seq = params.max_predictions_per_seq self._use_next_sentence_label = params.use_next_sentence_label self._use_position_id = params.use_position_id def _decode(self, record: tf.Tensor): """Decodes a serialized tf.Example.""" name_to_features = { 'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'masked_lm_positions': tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64), 'masked_lm_ids': tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64), 'masked_lm_weights': tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.float32), } if self._use_next_sentence_label: name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1], tf.int64) if self._use_position_id: name_to_features['position_ids'] = tf.io.FixedLenFeature( [self._seq_length], tf.int64) example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example def _parse(self, record: Mapping[str, tf.Tensor]): """Parses raw tensors into a dict of tensors to be consumed by the model.""" x = { 'input_word_ids': record['input_ids'], 'input_mask': record['input_mask'], 'input_type_ids': record['segment_ids'], 'masked_lm_positions': record['masked_lm_positions'], 'masked_lm_ids': record['masked_lm_ids'], 'masked_lm_weights': record['masked_lm_weights'], } if self._use_next_sentence_label: x['next_sentence_labels'] = record['next_sentence_labels'] if self._use_position_id: x['position_ids'] = record['position_ids'] return x def load(self, input_context: Optional[tf.distribute.InputContext] = None): """Returns a tf.dataset.Dataset.""" reader = input_reader.InputReader( params=self._params, decoder_fn=self._decode, parser_fn=self._parse) return reader.read(input_context)