# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras-based transformer block layer.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import functools import tensorflow as tf class TfFunctionIfEagerDecorator(object): """Helper decorator function to optionally apply the @tf.function annotation.""" def __init__(self, **kwargs): self.func_kwargs = kwargs def __call__(self, func): @functools.wraps(func) def wrapped_func(*args): # TODO(b/150147476, b/150024785): Fix tf.function in TF1 crash. if not hasattr(tf.compat.v1, "executing_eagerly_outside_functions" ) or tf.compat.v1.executing_eagerly_outside_functions(): return tf.function(func=func, **self.func_kwargs)(*args) return func(*args) # Cache the created function in self._call_impl. if not hasattr(self, "_call_impl"): self._call_impl = wrapped_func return self._call_impl def tf_function_if_eager(**kwargs): """Applies the @tf.function decorator only if running in eager mode.""" return TfFunctionIfEagerDecorator(**kwargs)