# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common NHNet/Bert2Bert configuration.""" from typing import List, Text import dataclasses from official.modeling.hyperparams import base_config @dataclasses.dataclass class BERT2BERTConfig(base_config.Config): """High-level configurations for BERT2BERT model. These include parameters that are not directly related to the experiment, e.g. encoder, decoder, prediction, training, etc. """ vocab_size: int = 30522 hidden_size: int = 768 num_hidden_layers: int = 12 num_attention_heads: int = 12 intermediate_size: int = 3072 hidden_act: str = "gelu" hidden_dropout_prob: float = 0.1 attention_probs_dropout_prob: float = 0.1 max_position_embeddings: int = 512 type_vocab_size: int = 2 initializer_range: float = 0.02 decoder_intermediate_size: int = 3072 num_decoder_attn_heads: int = 12 num_decoder_layers: int = 12 label_smoothing: float = 0.1 learning_rate: float = 0.05 learning_rate_warmup_steps: int = 20000 optimizer: str = "Adam" adam_beta1: float = 0.9 adam_beta2: float = 0.997 adam_epsilon: float = 1e-09 # predict params beam_size: int = 5 alpha: float = 0.6 initializer_gain: float = 1.0 use_cache: bool = True # input params input_sharding: bool = False input_data_not_padded: bool = False pad_token_id: int = 0 end_token_id: int = 102 start_token_id: int = 101 @dataclasses.dataclass class NHNetConfig(BERT2BERTConfig): """High-level configurations for NHNet model. These include parameters that are not directly related to the experiment, e.g. encoder, decoder, prediction, training, etc. """ multi_channel_cross_attention: bool = True passage_list: List[Text] = dataclasses.field( default_factory=lambda: [chr(ord("b") + i) for i in range(5)]) # Initialization method. # If init_from_bert2bert is false, we assume the checkpoint is from BERT # pretraining and only encoder and self-attention variables are initialized. init_from_bert2bert: bool = True UNITTEST_CONFIG = { "attention_probs_dropout_prob": 0.0, "hidden_act": "gelu", "hidden_dropout_prob": 0.0, "hidden_size": 16, "initializer_range": 0.02, "intermediate_size": 32, "max_position_embeddings": 128, "num_attention_heads": 2, "num_hidden_layers": 1, "type_vocab_size": 2, "vocab_size": 30522, "initializer_gain": 1.0, "decoder_intermediate_size": 32, "num_decoder_attn_heads": 2, "num_decoder_layers": 1, "use_cache": True, "input_data_not_padded": False, "pad_token_id": 0, "end_token_id": 102, "start_token_id": 101, }