# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Optimizer and learning rate scheduler.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import tensorflow as tf from official.modeling.hyperparams import params_dict class LearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): """Learning rate schedule.""" def __init__(self, initial_learning_rate, hidden_size, warmup_steps): """Initialize configuration of the learning rate schedule. Args: initial_learning_rate: A float, the initial learning rate. hidden_size: An integer, the model dimension in the hidden layers. warmup_steps: An integer, the number of steps required for linear warmup. """ super(LearningRateSchedule, self).__init__() self.initial_learning_rate = initial_learning_rate self.hidden_size = hidden_size self.warmup_steps = tf.cast(warmup_steps, tf.float32) def __call__(self, global_step): """Calculate learning rate with linear warmup and rsqrt decay. Args: global_step: An integer, the current global step used for learning rate calculation. Returns: A float, the learning rate needs to be used for current global step. """ with tf.name_scope('learning_rate_schedule'): global_step = tf.cast(global_step, tf.float32) learning_rate = self.initial_learning_rate learning_rate *= (self.hidden_size**-0.5) # Apply linear warmup learning_rate *= tf.minimum(1.0, global_step / self.warmup_steps) # Apply rsqrt decay learning_rate /= tf.sqrt(tf.maximum(global_step, self.warmup_steps)) return learning_rate def get_config(self): """Get the configuration of the learning rate schedule.""" return { 'initial_learning_rate': self.initial_learning_rate, 'hidden_size': self.hidden_size, 'warmup_steps': self.warmup_steps, } def create_optimizer(params: params_dict.ParamsDict): """Creates optimizer.""" lr_schedule = LearningRateSchedule( params.learning_rate, params.hidden_size, params.learning_rate_warmup_steps) return tf.keras.optimizers.Adam( learning_rate=lr_schedule, beta_1=params.adam_beta1, beta_2=params.adam_beta2, epsilon=params.adam_epsilon)