# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions and classes related to optimization (weight updates).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from absl import logging import gin import tensorflow as tf import tensorflow_addons.optimizers as tfa_optimizers class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule): """Applies a warmup schedule on a given learning rate decay schedule.""" def __init__(self, initial_learning_rate, decay_schedule_fn, warmup_steps, power=1.0, name=None): super(WarmUp, self).__init__() self.initial_learning_rate = initial_learning_rate self.warmup_steps = warmup_steps self.power = power self.decay_schedule_fn = decay_schedule_fn self.name = name def __call__(self, step): with tf.name_scope(self.name or 'WarmUp') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. global_step_float = tf.cast(step, tf.float32) warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) warmup_percent_done = global_step_float / warmup_steps_float warmup_learning_rate = ( self.initial_learning_rate * tf.math.pow(warmup_percent_done, self.power)) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step), name=name) def get_config(self): return { 'initial_learning_rate': self.initial_learning_rate, 'decay_schedule_fn': self.decay_schedule_fn, 'warmup_steps': self.warmup_steps, 'power': self.power, 'name': self.name } @gin.configurable def create_optimizer(init_lr, num_train_steps, num_warmup_steps, end_lr=0.0, optimizer_type='adamw'): """Creates an optimizer with learning rate schedule.""" # Implements linear decay of the learning rate. lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=init_lr, decay_steps=num_train_steps, end_learning_rate=end_lr) if num_warmup_steps: lr_schedule = WarmUp( initial_learning_rate=init_lr, decay_schedule_fn=lr_schedule, warmup_steps=num_warmup_steps) if optimizer_type == 'adamw': logging.info('using Adamw optimizer') optimizer = AdamWeightDecay( learning_rate=lr_schedule, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias']) elif optimizer_type == 'lamb': logging.info('using Lamb optimizer') optimizer = tfa_optimizers.LAMB( learning_rate=lr_schedule, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias']) else: raise ValueError('Unsupported optimizer type: ', optimizer_type) return optimizer class AdamWeightDecay(tf.keras.optimizers.Adam): """Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways. Instead we want ot decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. """ def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, weight_decay_rate=0.0, include_in_weight_decay=None, exclude_from_weight_decay=None, name='AdamWeightDecay', **kwargs): super(AdamWeightDecay, self).__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs) self.weight_decay_rate = weight_decay_rate self._include_in_weight_decay = include_in_weight_decay self._exclude_from_weight_decay = exclude_from_weight_decay @classmethod def from_config(cls, config): """Creates an optimizer from its config with WarmUp custom object.""" custom_objects = {'WarmUp': WarmUp} return super(AdamWeightDecay, cls).from_config( config, custom_objects=custom_objects) def _prepare_local(self, var_device, var_dtype, apply_state): super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state) apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant( self.weight_decay_rate, name='adam_weight_decay_rate') def _decay_weights_op(self, var, learning_rate, apply_state): do_decay = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'], use_locking=self._use_locking) return tf.no_op() def apply_gradients(self, grads_and_vars, name=None, experimental_aggregate_gradients=True): grads, tvars = list(zip(*grads_and_vars)) if experimental_aggregate_gradients: # when experimental_aggregate_gradients = False, apply_gradients() no # longer implicitly allreduce gradients, users manually allreduce gradient # and passed the allreduced grads_and_vars. For now, the # clip_by_global_norm will be moved to before the explicit allreduce to # keep the math the same as TF 1 and pre TF 2.2 implementation. (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) return super(AdamWeightDecay, self).apply_gradients( zip(grads, tvars), name=name, experimental_aggregate_gradients=experimental_aggregate_gradients) def _get_lr(self, var_device, var_dtype, apply_state): """Retrieves the learning rate with the given state.""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} apply_state = apply_state or {} coefficients = apply_state.get((var_device, var_dtype)) if coefficients is None: coefficients = self._fallback_apply_state(var_device, var_dtype) apply_state[(var_device, var_dtype)] = coefficients return coefficients['lr_t'], dict(apply_state=apply_state) def _resource_apply_dense(self, grad, var, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_dense(grad, var, **kwargs) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_sparse(grad, var, indices, **kwargs) def get_config(self): config = super(AdamWeightDecay, self).get_config() config.update({ 'weight_decay_rate': self.weight_decay_rate, }) return config def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(r, param_name) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True