# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Beam search in TF v2.""" import tensorflow as tf from official.nlp.transformer import beam_search_v1 as v1 _StateKeys = v1._StateKeys # pylint: disable=protected-access class SequenceBeamSearchV2(v1.SequenceBeamSearch): """Implementation of beam search loop in v2.""" def search(self, initial_ids, initial_cache): """Beam search for sequences with highest scores.""" state, state_shapes = self._create_initial_state(initial_ids, initial_cache) finished_state = tf.nest.map_structure( tf.stop_gradient, tf.while_loop(self._continue_search, self._search_step, loop_vars=[state], shape_invariants=[state_shapes], parallel_iterations=1)) finished_state = finished_state[0] alive_seq = finished_state[_StateKeys.ALIVE_SEQ] alive_log_probs = finished_state[_StateKeys.ALIVE_LOG_PROBS] finished_seq = finished_state[_StateKeys.FINISHED_SEQ] finished_scores = finished_state[_StateKeys.FINISHED_SCORES] finished_flags = finished_state[_StateKeys.FINISHED_FLAGS] # 2.0 changes tf.where behavior. Should make parameters broadcastable. finished_cond = tf.reduce_any(finished_flags, 1, name="finished_cond") seq_cond = _expand_to_same_rank(finished_cond, finished_seq) score_cond = _expand_to_same_rank(finished_cond, finished_scores) # Account for corner case where there are no finished sequences for a # particular batch item. In that case, return alive sequences for that batch # item. finished_seq = tf.where(seq_cond, finished_seq, alive_seq) finished_scores = tf.where( score_cond, finished_scores, alive_log_probs) return finished_seq, finished_scores def sequence_beam_search(symbols_to_logits_fn, initial_ids, initial_cache, vocab_size, beam_size, alpha, max_decode_length, eos_id, padded_decode=False, dtype="float32"): """Search for sequence of subtoken ids with the largest probability. Args: symbols_to_logits_fn: A function that takes in ids, index, and cache as arguments. The passed in arguments will have shape: ids -> A tensor with shape [batch_size * beam_size, index]. index -> A scalar. cache -> A nested dictionary of tensors [batch_size * beam_size, ...]. The function must return a tuple of logits and new cache: logits -> A tensor with shape [batch * beam_size, vocab_size]. new cache -> A nested dictionary with the same shape/structure as the inputted cache. initial_ids: An int32 tensor with shape [batch_size]. Starting ids for each batch item. initial_cache: A dictionary, containing starting decoder variables information. vocab_size: An integer, the size of tokens. beam_size: An integer, the number of beams. alpha: A float, defining the strength of length normalization. max_decode_length: An integer, the maximum length to decoded a sequence. eos_id: An integer, ID of eos token, used to determine when a sequence has finished. padded_decode: A bool, indicating if max_sequence_length padding is used for beam search. dtype: A tensorflow data type used for score computation. The default is tf.float32. Returns: Top decoded sequences [batch_size, beam_size, max_decode_length] sequence scores [batch_size, beam_size] """ batch_size = ( initial_ids.shape.as_list()[0] if padded_decode else tf.shape(initial_ids)[0]) sbs = SequenceBeamSearchV2(symbols_to_logits_fn, vocab_size, batch_size, beam_size, alpha, max_decode_length, eos_id, padded_decode, dtype) return sbs.search(initial_ids, initial_cache) def _expand_to_same_rank(tensor, target): """Expands a given tensor to target's rank to be broadcastable. Args: tensor: input tensor to tile. Shape: [b, d1, ..., da] target: target tensor. Shape: [b, d1, ..., da, ..., dn] Returns: Tiled tensor of shape [b, d1, ..., da, 1, ..., 1] with same rank of target. Raises: ValueError, if the shape rank of rank tensor/target is None. """ if tensor.shape.rank is None: raise ValueError("Expect rank for tensor shape, but got None.") if target.shape.rank is None: raise ValueError("Expect rank for target shape, but got None.") with tf.name_scope("expand_rank"): diff_rank = target.shape.rank - tensor.shape.rank for _ in range(diff_rank): tensor = tf.expand_dims(tensor, -1) return tensor