# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Optimizer from addons and learning rate scheduler.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf K = tf.keras.backend class LearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): """Learning rate schedule.""" def __init__(self, initial_learning_rate, hidden_size, warmup_steps): """Initialize configuration of the learning rate schedule. Args: initial_learning_rate: A float, the initial learning rate. hidden_size: An integer, the model dimension in the hidden layers. warmup_steps: An integer, the number of steps required for linear warmup. """ super(LearningRateSchedule, self).__init__() self.initial_learning_rate = initial_learning_rate self.hidden_size = hidden_size self.warmup_steps = tf.cast(warmup_steps, tf.float32) def __call__(self, global_step): """Calculate learning rate with linear warmup and rsqrt decay. Args: global_step: An integer, the current global step used for learning rate calculation. Returns: A float, the learning rate needs to be used for current global step. """ with tf.name_scope('learning_rate_schedule'): global_step = tf.cast(global_step, tf.float32) learning_rate = self.initial_learning_rate learning_rate *= (self.hidden_size**-0.5) # Apply linear warmup learning_rate *= tf.minimum(1.0, global_step / self.warmup_steps) # Apply rsqrt decay learning_rate /= tf.sqrt(tf.maximum(global_step, self.warmup_steps)) return learning_rate def get_config(self): """Get the configuration of the learning rate schedule.""" return { 'initial_learning_rate': self.initial_learning_rate, 'hidden_size': self.hidden_size, 'warmup_steps': self.warmup_steps, } class LearningRateFn(object): """Creates learning rate function.""" def __init__(self, learning_rate, hidden_size, warmup_steps): self.learning_rate = learning_rate self.hidden_size = hidden_size self.warmup_steps = float(warmup_steps) def __call__(self, global_step): """Calculate learning rate with linear warmup and rsqrt decay.""" step = float(global_step) learning_rate = self.learning_rate learning_rate *= (self.hidden_size ** -0.5) # Apply linear warmup learning_rate *= np.minimum(1.0, step / self.warmup_steps) # Apply rsqrt decay learning_rate /= np.sqrt(np.maximum(step, self.warmup_steps)) return learning_rate class LearningRateScheduler(tf.keras.callbacks.Callback): """Keras callback to schedule learning rate. TODO(tianlin): Refactor this scheduler and LearningRateBatchScheduler in official/resnet/keras/keras_common.py. """ def __init__(self, schedule, init_steps=None, verbose=False): super(LearningRateScheduler, self).__init__() self.schedule = schedule self.verbose = verbose if init_steps is None: init_steps = 0.0 self.steps = float(init_steps) # Total steps during training. def on_epoch_begin(self, epoch, logs=None): if not hasattr(self.model.optimizer, 'lr'): raise ValueError('Optimizer must have a "lr" attribute.') if not hasattr(self.model.optimizer, 'iterations'): raise ValueError('Optimizer must have a "iterations" attribute.') def on_train_batch_begin(self, batch, logs=None): """Adjusts learning rate for each train batch.""" if self.verbose > 0: iterations = K.get_value(self.model.optimizer.iterations) print('Original iteration %d' % iterations) self.steps += 1.0 try: # new API lr = float(K.get_value(self.model.optimizer.lr)) lr = self.schedule(self.steps, lr) except TypeError: # Support for old API for backward compatibility lr = self.schedule(self.steps) if not isinstance(lr, (float, np.float32, np.float64)): raise ValueError('The output of the "schedule" function ' 'should be float.') K.set_value(self.model.optimizer.lr, lr) K.set_value(self.model.optimizer.iterations, self.steps) if self.verbose > 0: print('Batch %05d Step %05d: LearningRateScheduler setting learning ' 'rate to %s.' % (batch + 1, self.steps, lr)) def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr) logs['steps'] = self.steps