# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Learning rate utilities for vision tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Any, List, Mapping import numpy as np import tensorflow as tf BASE_LEARNING_RATE = 0.1 class WarmupDecaySchedule(tf.keras.optimizers.schedules.LearningRateSchedule): """A wrapper for LearningRateSchedule that includes warmup steps.""" def __init__( self, lr_schedule: tf.keras.optimizers.schedules.LearningRateSchedule, warmup_steps: int): """Add warmup decay to a learning rate schedule. Args: lr_schedule: base learning rate scheduler warmup_steps: number of warmup steps """ super(WarmupDecaySchedule, self).__init__() self._lr_schedule = lr_schedule self._warmup_steps = warmup_steps def __call__(self, step: int): lr = self._lr_schedule(step) if self._warmup_steps: initial_learning_rate = tf.convert_to_tensor( self._lr_schedule.initial_learning_rate, name="initial_learning_rate") dtype = initial_learning_rate.dtype global_step_recomp = tf.cast(step, dtype) warmup_steps = tf.cast(self._warmup_steps, dtype) warmup_lr = initial_learning_rate * global_step_recomp / warmup_steps lr = tf.cond(global_step_recomp < warmup_steps, lambda: warmup_lr, lambda: lr) return lr def get_config(self) -> Mapping[str, Any]: config = self._lr_schedule.get_config() config.update({ "warmup_steps": self._warmup_steps, }) return config # TODO(b/149030439) - refactor this with # tf.keras.optimizers.schedules.PiecewiseConstantDecay + WarmupDecaySchedule. class PiecewiseConstantDecayWithWarmup( tf.keras.optimizers.schedules.LearningRateSchedule): """Piecewise constant decay with warmup schedule.""" def __init__(self, batch_size: int, epoch_size: int, warmup_epochs: int, boundaries: List[int], multipliers: List[float]): """Piecewise constant decay with warmup. Args: batch_size: The training batch size used in the experiment. epoch_size: The size of an epoch, or the number of examples in an epoch. warmup_epochs: The number of warmup epochs to apply. boundaries: The list of floats with strictly increasing entries. multipliers: The list of multipliers/learning rates to use for the piecewise portion. The length must be 1 less than that of boundaries. """ super(PiecewiseConstantDecayWithWarmup, self).__init__() if len(boundaries) != len(multipliers) - 1: raise ValueError("The length of boundaries must be 1 less than the " "length of multipliers") base_lr_batch_size = 256 steps_per_epoch = epoch_size // batch_size self._rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size self._step_boundaries = [float(steps_per_epoch) * x for x in boundaries] self._lr_values = [self._rescaled_lr * m for m in multipliers] self._warmup_steps = warmup_epochs * steps_per_epoch def __call__(self, step: int): """Compute learning rate at given step.""" def warmup_lr(): return self._rescaled_lr * ( step / tf.cast(self._warmup_steps, tf.float32)) def piecewise_lr(): return tf.compat.v1.train.piecewise_constant( tf.cast(step, tf.float32), self._step_boundaries, self._lr_values) return tf.cond(step < self._warmup_steps, warmup_lr, piecewise_lr) def get_config(self) -> Mapping[str, Any]: return { "rescaled_lr": self._rescaled_lr, "step_boundaries": self._step_boundaries, "lr_values": self._lr_values, "warmup_steps": self._warmup_steps, } class CosineDecayWithWarmup(tf.keras.optimizers.schedules.LearningRateSchedule): """Class to generate learning rate tensor.""" def __init__(self, batch_size: int, total_steps: int, warmup_steps: int): """Creates the consine learning rate tensor with linear warmup. Args: batch_size: The training batch size used in the experiment. total_steps: Total training steps. warmup_steps: Steps for the warm up period. """ super(CosineDecayWithWarmup, self).__init__() base_lr_batch_size = 256 self._total_steps = total_steps self._init_learning_rate = BASE_LEARNING_RATE * batch_size / base_lr_batch_size self._warmup_steps = warmup_steps def __call__(self, global_step: int): global_step = tf.cast(global_step, dtype=tf.float32) warmup_steps = self._warmup_steps init_lr = self._init_learning_rate total_steps = self._total_steps linear_warmup = global_step / warmup_steps * init_lr cosine_learning_rate = init_lr * (tf.cos(np.pi * (global_step - warmup_steps) / (total_steps - warmup_steps)) + 1.0) / 2.0 learning_rate = tf.where(global_step < warmup_steps, linear_warmup, cosine_learning_rate) return learning_rate def get_config(self): return { "total_steps": self._total_steps, "warmup_learning_rate": self._warmup_learning_rate, "warmup_steps": self._warmup_steps, "init_learning_rate": self._init_learning_rate, }