# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test utilities for image classification tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.keras import backend from tensorflow.python.keras import layers from tensorflow.python.keras import models def trivial_model(num_classes): """Trivial model for ImageNet dataset.""" input_shape = (224, 224, 3) img_input = layers.Input(shape=input_shape) x = layers.Lambda(lambda x: backend.reshape(x, [-1, 224 * 224 * 3]), name='reshape')(img_input) x = layers.Dense(1, name='fc1')(x) x = layers.Dense(num_classes, name='fc1000')(x) x = layers.Activation('softmax', dtype='float32')(x) return models.Model(img_input, x, name='trivial')