import numpy as np import tensorflow as tf class Autoencoder(object): def __init__(self, n_layers, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer()): self.n_layers = n_layers self.transfer = transfer_function network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_layers[0]]) self.hidden_encode = [] h = self.x for layer in range(len(self.n_layers)-1): h = self.transfer( tf.add(tf.matmul(h, self.weights['encode'][layer]['w']), self.weights['encode'][layer]['b'])) self.hidden_encode.append(h) self.hidden_recon = [] for layer in range(len(self.n_layers)-1): h = self.transfer( tf.add(tf.matmul(h, self.weights['recon'][layer]['w']), self.weights['recon'][layer]['b'])) self.hidden_recon.append(h) self.reconstruction = self.hidden_recon[-1] # cost self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): all_weights = dict() initializer = tf.contrib.layers.xavier_initializer() # Encoding network weights encoder_weights = [] for layer in range(len(self.n_layers)-1): w = tf.Variable( initializer((self.n_layers[layer], self.n_layers[layer + 1]), dtype=tf.float32)) b = tf.Variable( tf.zeros([self.n_layers[layer + 1]], dtype=tf.float32)) encoder_weights.append({'w': w, 'b': b}) # Recon network weights recon_weights = [] for layer in range(len(self.n_layers)-1, 0, -1): w = tf.Variable( initializer((self.n_layers[layer], self.n_layers[layer - 1]), dtype=tf.float32)) b = tf.Variable( tf.zeros([self.n_layers[layer - 1]], dtype=tf.float32)) recon_weights.append({'w': w, 'b': b}) all_weights['encode'] = encoder_weights all_weights['recon'] = recon_weights return all_weights def partial_fit(self, X): cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X}) return cost def calc_total_cost(self, X): return self.sess.run(self.cost, feed_dict={self.x: X}) def transform(self, X): return self.sess.run(self.hidden_encode[-1], feed_dict={self.x: X}) def generate(self, hidden=None): if hidden is None: hidden = np.random.normal(size=self.weights['encode'][-1]['b']) return self.sess.run(self.reconstruction, feed_dict={self.hidden_encode[-1]: hidden}) def reconstruct(self, X): return self.sess.run(self.reconstruction, feed_dict={self.x: X}) def getWeights(self): raise NotImplementedError return self.sess.run(self.weights) def getBiases(self): raise NotImplementedError return self.sess.run(self.weights)