import tensorflow as tf class AdditiveGaussianNoiseAutoencoder(object): def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(), scale = 0.1): self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.scale = tf.placeholder(tf.float32) self.training_scale = scale network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) # cost self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): all_weights = dict() all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden], initializer=tf.contrib.layers.xavier_initializer()) all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32)) all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32)) all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32)) return all_weights def partial_fit(self, X): cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x: X, self.scale: self.training_scale }) return cost def calc_total_cost(self, X): return self.sess.run(self.cost, feed_dict = {self.x: X, self.scale: self.training_scale }) def transform(self, X): return self.sess.run(self.hidden, feed_dict = {self.x: X, self.scale: self.training_scale }) def generate(self, hidden=None): if hidden is None: hidden = self.sess.run(tf.random_normal([1, self.n_hidden])) return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden}) def reconstruct(self, X): return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.scale: self.training_scale }) def getWeights(self): return self.sess.run(self.weights['w1']) def getBiases(self): return self.sess.run(self.weights['b1']) class MaskingNoiseAutoencoder(object): def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(), dropout_probability = 0.95): self.n_input = n_input self.n_hidden = n_hidden self.transfer = transfer_function self.dropout_probability = dropout_probability self.keep_prob = tf.placeholder(tf.float32) network_weights = self._initialize_weights() self.weights = network_weights # model self.x = tf.placeholder(tf.float32, [None, self.n_input]) self.hidden = self.transfer(tf.add(tf.matmul(tf.nn.dropout(self.x, self.keep_prob), self.weights['w1']), self.weights['b1'])) self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2']) # cost self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0)) self.optimizer = optimizer.minimize(self.cost) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) def _initialize_weights(self): all_weights = dict() all_weights['w1'] = tf.get_variable("w1", shape=[self.n_input, self.n_hidden], initializer=tf.contrib.layers.xavier_initializer()) all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32)) all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32)) all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32)) return all_weights def partial_fit(self, X): cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x: X, self.keep_prob: self.dropout_probability}) return cost def calc_total_cost(self, X): return self.sess.run(self.cost, feed_dict = {self.x: X, self.keep_prob: 1.0}) def transform(self, X): return self.sess.run(self.hidden, feed_dict = {self.x: X, self.keep_prob: 1.0}) def generate(self, hidden=None): if hidden is None: hidden = self.sess.run(tf.random_normal([1, self.n_hidden])) return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden}) def reconstruct(self, X): return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.keep_prob: 1.0}) def getWeights(self): return self.sess.run(self.weights['w1']) def getBiases(self): return self.sess.run(self.weights['b1'])