# Copyright 2018 The TensorFlow Global Objectives Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for global objectives util functions.""" # Dependency imports from absl.testing import parameterized import numpy as np import tensorflow as tf from global_objectives import util def weighted_sigmoid_cross_entropy(targets, logits, weight): return (weight * targets * np.log(1.0 + np.exp(-logits)) + ( (1.0 - targets) * np.log(1.0 + 1.0 / np.exp(-logits)))) def hinge_loss(labels, logits): # Mostly copied from tensorflow.python.ops.losses but with loss per datapoint. labels = tf.to_float(labels) all_ones = tf.ones_like(labels) labels = tf.subtract(2 * labels, all_ones) return tf.nn.relu(tf.subtract(all_ones, tf.multiply(labels, logits))) class WeightedSigmoidCrossEntropyTest(parameterized.TestCase, tf.test.TestCase): def testTrivialCompatibilityWithSigmoidCrossEntropy(self): """Tests compatibility with unweighted function with weight 1.0.""" x_shape = [300, 10] targets = np.random.random_sample(x_shape).astype(np.float32) logits = np.random.randn(*x_shape).astype(np.float32) weighted_loss = util.weighted_sigmoid_cross_entropy_with_logits( targets, logits) expected_loss = ( tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits( logits, targets)) with self.test_session(): self.assertAllClose(expected_loss.eval(), weighted_loss.eval(), atol=0.000001) def testNonTrivialCompatibilityWithSigmoidCrossEntropy(self): """Tests use of an arbitrary weight (4.12).""" x_shape = [300, 10] targets = np.random.random_sample(x_shape).astype(np.float32) logits = np.random.randn(*x_shape).astype(np.float32) weight = 4.12 weighted_loss = util.weighted_sigmoid_cross_entropy_with_logits( targets, logits, weight, weight) expected_loss = ( weight * tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits( logits, targets)) with self.test_session(): self.assertAllClose(expected_loss.eval(), weighted_loss.eval(), atol=0.000001) def testDifferentSizeWeightedSigmoidCrossEntropy(self): """Tests correctness on 3D tensors. Tests that the function works as expected when logits is a 3D tensor and targets is a 2D tensor. """ targets_shape = [30, 4] logits_shape = [targets_shape[0], targets_shape[1], 3] targets = np.random.random_sample(targets_shape).astype(np.float32) logits = np.random.randn(*logits_shape).astype(np.float32) weight_vector = [2.0, 3.0, 13.0] loss = util.weighted_sigmoid_cross_entropy_with_logits(targets, logits, weight_vector) with self.test_session(): loss = loss.eval() for i in range(0, len(weight_vector)): expected = weighted_sigmoid_cross_entropy(targets, logits[:, :, i], weight_vector[i]) self.assertAllClose(loss[:, :, i], expected, atol=0.000001) @parameterized.parameters((300, 10, 0.3), (20, 4, 2.0), (30, 4, 3.9)) def testWeightedSigmoidCrossEntropy(self, batch_size, num_labels, weight): """Tests thats the tf and numpy functions agree on many instances.""" x_shape = [batch_size, num_labels] targets = np.random.random_sample(x_shape).astype(np.float32) logits = np.random.randn(*x_shape).astype(np.float32) with self.test_session(): loss = util.weighted_sigmoid_cross_entropy_with_logits( targets, logits, weight, 1.0, name='weighted-loss') expected = weighted_sigmoid_cross_entropy(targets, logits, weight) self.assertAllClose(expected, loss.eval(), atol=0.000001) def testGradients(self): """Tests that weighted loss gradients behave as expected.""" dummy_tensor = tf.constant(1.0) positives_shape = [10, 1] positives_logits = dummy_tensor * tf.Variable( tf.random_normal(positives_shape) + 1.0) positives_targets = tf.ones(positives_shape) positives_weight = 4.6 positives_loss = ( tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits( positives_logits, positives_targets) * positives_weight) negatives_shape = [190, 1] negatives_logits = dummy_tensor * tf.Variable( tf.random_normal(negatives_shape)) negatives_targets = tf.zeros(negatives_shape) negatives_weight = 0.9 negatives_loss = ( tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits( negatives_logits, negatives_targets) * negatives_weight) all_logits = tf.concat([positives_logits, negatives_logits], 0) all_targets = tf.concat([positives_targets, negatives_targets], 0) weighted_loss = tf.reduce_sum( util.weighted_sigmoid_cross_entropy_with_logits( all_targets, all_logits, positives_weight, negatives_weight)) weighted_gradients = tf.gradients(weighted_loss, dummy_tensor) expected_loss = tf.add( tf.reduce_sum(positives_loss), tf.reduce_sum(negatives_loss)) expected_gradients = tf.gradients(expected_loss, dummy_tensor) with tf.Session() as session: tf.global_variables_initializer().run() grad, expected_grad = session.run( [weighted_gradients, expected_gradients]) self.assertAllClose(grad, expected_grad) def testDtypeFlexibility(self): """Tests the loss on inputs of varying data types.""" shape = [20, 3] logits = np.random.randn(*shape) targets = tf.truncated_normal(shape) positive_weights = tf.constant(3, dtype=tf.int64) negative_weights = 1 loss = util.weighted_sigmoid_cross_entropy_with_logits( targets, logits, positive_weights, negative_weights) with self.test_session(): self.assertEqual(loss.eval().dtype, np.float) class WeightedHingeLossTest(tf.test.TestCase): def testTrivialCompatibilityWithHinge(self): # Tests compatibility with unweighted hinge loss. x_shape = [55, 10] logits = tf.constant(np.random.randn(*x_shape).astype(np.float32)) targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.3)) weighted_loss = util.weighted_hinge_loss(targets, logits) expected_loss = hinge_loss(targets, logits) with self.test_session(): self.assertAllClose(expected_loss.eval(), weighted_loss.eval()) def testLessTrivialCompatibilityWithHinge(self): # Tests compatibility with a constant weight for positives and negatives. x_shape = [56, 11] logits = tf.constant(np.random.randn(*x_shape).astype(np.float32)) targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.7)) weight = 1.0 + 1.0/2 + 1.0/3 + 1.0/4 + 1.0/5 + 1.0/6 + 1.0/7 weighted_loss = util.weighted_hinge_loss(targets, logits, weight, weight) expected_loss = hinge_loss(targets, logits) * weight with self.test_session(): self.assertAllClose(expected_loss.eval(), weighted_loss.eval()) def testNontrivialCompatibilityWithHinge(self): # Tests compatibility with different positive and negative weights. x_shape = [23, 8] logits_positives = tf.constant(np.random.randn(*x_shape).astype(np.float32)) logits_negatives = tf.constant(np.random.randn(*x_shape).astype(np.float32)) targets_positives = tf.ones(x_shape) targets_negatives = tf.zeros(x_shape) logits = tf.concat([logits_positives, logits_negatives], 0) targets = tf.concat([targets_positives, targets_negatives], 0) raw_loss = util.weighted_hinge_loss(targets, logits, positive_weights=3.4, negative_weights=1.2) loss = tf.reduce_sum(raw_loss, 0) positives_hinge = hinge_loss(targets_positives, logits_positives) negatives_hinge = hinge_loss(targets_negatives, logits_negatives) expected = tf.add(tf.reduce_sum(3.4 * positives_hinge, 0), tf.reduce_sum(1.2 * negatives_hinge, 0)) with self.test_session(): self.assertAllClose(loss.eval(), expected.eval()) def test3DLogitsAndTargets(self): # Tests correctness when logits is 3D and targets is 2D. targets_shape = [30, 4] logits_shape = [targets_shape[0], targets_shape[1], 3] targets = tf.to_float( tf.constant(np.random.random_sample(targets_shape) > 0.7)) logits = tf.constant(np.random.randn(*logits_shape).astype(np.float32)) weight_vector = [1.0, 1.0, 1.0] loss = util.weighted_hinge_loss(targets, logits, weight_vector) with self.test_session(): loss_value = loss.eval() for i in range(len(weight_vector)): expected = hinge_loss(targets, logits[:, :, i]).eval() self.assertAllClose(loss_value[:, :, i], expected) class BuildLabelPriorsTest(tf.test.TestCase): def testLabelPriorConsistency(self): # Checks that, with zero pseudocounts, the returned label priors reproduce # label frequencies in the batch. batch_shape = [4, 10] labels = tf.Variable( tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.678))) label_priors_update = util.build_label_priors( labels=labels, positive_pseudocount=0, negative_pseudocount=0) expected_priors = tf.reduce_mean(labels, 0) with self.test_session(): tf.global_variables_initializer().run() self.assertAllClose(label_priors_update.eval(), expected_priors.eval()) def testLabelPriorsUpdate(self): # Checks that the update of label priors behaves as expected. batch_shape = [1, 5] labels = tf.Variable( tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4))) label_priors_update = util.build_label_priors(labels) label_sum = np.ones(shape=batch_shape) weight_sum = 2.0 * np.ones(shape=batch_shape) with self.test_session() as session: tf.global_variables_initializer().run() for _ in range(3): label_sum += labels.eval() weight_sum += np.ones(shape=batch_shape) expected_posteriors = label_sum / weight_sum label_priors = label_priors_update.eval().reshape(batch_shape) self.assertAllClose(label_priors, expected_posteriors) # Re-initialize labels to get a new random sample. session.run(labels.initializer) def testLabelPriorsUpdateWithWeights(self): # Checks the update of label priors with per-example weights. batch_size = 6 num_labels = 5 batch_shape = [batch_size, num_labels] labels = tf.Variable( tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.6))) weights = tf.Variable(tf.random_uniform(batch_shape) * 6.2) update_op = util.build_label_priors(labels, weights=weights) expected_weighted_label_counts = 1.0 + tf.reduce_sum(weights * labels, 0) expected_weight_sum = 2.0 + tf.reduce_sum(weights, 0) expected_label_posteriors = tf.divide(expected_weighted_label_counts, expected_weight_sum) with self.test_session() as session: tf.global_variables_initializer().run() updated_priors, expected_posteriors = session.run( [update_op, expected_label_posteriors]) self.assertAllClose(updated_priors, expected_posteriors) class WeightedSurrogateLossTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( ('hinge', util.weighted_hinge_loss), ('xent', util.weighted_sigmoid_cross_entropy_with_logits)) def testCompatibilityLoss(self, loss_name, loss_fn): x_shape = [28, 4] logits = tf.constant(np.random.randn(*x_shape).astype(np.float32)) targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.5)) positive_weights = 0.66 negative_weights = 11.1 expected_loss = loss_fn( targets, logits, positive_weights=positive_weights, negative_weights=negative_weights) computed_loss = util.weighted_surrogate_loss( targets, logits, loss_name, positive_weights=positive_weights, negative_weights=negative_weights) with self.test_session(): self.assertAllClose(expected_loss.eval(), computed_loss.eval()) def testSurrogatgeError(self): x_shape = [7, 3] logits = tf.constant(np.random.randn(*x_shape).astype(np.float32)) targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.5)) with self.assertRaises(ValueError): util.weighted_surrogate_loss(logits, targets, 'bug') if __name__ == '__main__': tf.test.main()