#!/usr/bin/env python # Copyright 2017, 2018 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trains the integrated LexNET classifier.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import lexnet_common import lexnet_model import path_model from sklearn import metrics import tensorflow as tf tf.flags.DEFINE_string( 'dataset_dir', 'datasets', 'Dataset base directory') tf.flags.DEFINE_string( 'dataset', 'tratz/fine_grained', 'Subdirectory containing the corpus directories: ' 'subdirectory of dataset_dir') tf.flags.DEFINE_string( 'corpus', 'wiki/random', 'Subdirectory containing the corpus and split: ' 'subdirectory of dataset_dir/dataset') tf.flags.DEFINE_string( 'embeddings_base_path', 'embeddings', 'Embeddings base directory') tf.flags.DEFINE_string( 'logdir', 'logdir', 'Directory of model output files') tf.flags.DEFINE_string('hparams', '', 'Hyper-parameters') tf.flags.DEFINE_string( 'input', 'integrated', 'The model(dist/dist-nc/path/integrated/integrated-nc') FLAGS = tf.flags.FLAGS def main(_): # Pick up any one-off hyper-parameters. hparams = lexnet_model.LexNETModel.default_hparams() hparams.corpus = FLAGS.corpus hparams.input = FLAGS.input hparams.path_embeddings_file = 'path_embeddings/%s/%s' % ( FLAGS.dataset, FLAGS.corpus) input_dir = hparams.input if hparams.input != 'path' else 'path_classifier' # Set the number of classes classes_filename = os.path.join( FLAGS.dataset_dir, FLAGS.dataset, 'classes.txt') with open(classes_filename) as f_in: classes = f_in.read().splitlines() hparams.num_classes = len(classes) print('Model will predict into %d classes' % hparams.num_classes) # Get the datasets train_set, val_set, test_set = ( os.path.join( FLAGS.dataset_dir, FLAGS.dataset, FLAGS.corpus, filename + '.tfrecs.gz') for filename in ['train', 'val', 'test']) print('Running with hyper-parameters: {}'.format(hparams)) # Load the instances print('Loading instances...') opts = tf.python_io.TFRecordOptions( compression_type=tf.python_io.TFRecordCompressionType.GZIP) train_instances = list(tf.python_io.tf_record_iterator(train_set, opts)) val_instances = list(tf.python_io.tf_record_iterator(val_set, opts)) test_instances = list(tf.python_io.tf_record_iterator(test_set, opts)) # Load the word embeddings print('Loading word embeddings...') relata_embeddings, path_embeddings, nc_embeddings, path_to_index = ( None, None, None, None) if hparams.input in ['dist', 'dist-nc', 'integrated', 'integrated-nc']: relata_embeddings = lexnet_common.load_word_embeddings( FLAGS.embeddings_base_path, hparams.relata_embeddings_file) if hparams.input in ['path', 'integrated', 'integrated-nc']: path_embeddings, path_to_index = path_model.load_path_embeddings( os.path.join(FLAGS.embeddings_base_path, hparams.path_embeddings_file), hparams.path_dim) if hparams.input in ['dist-nc', 'integrated-nc']: nc_embeddings = lexnet_common.load_word_embeddings( FLAGS.embeddings_base_path, hparams.nc_embeddings_file) # Define the graph and the model with tf.Graph().as_default(): model = lexnet_model.LexNETModel( hparams, relata_embeddings, path_embeddings, nc_embeddings, path_to_index) # Initialize a session and start training session = tf.Session() session.run(tf.global_variables_initializer()) # Initalize the path mapping if hparams.input in ['path', 'integrated', 'integrated-nc']: session.run(tf.tables_initializer()) session.run(model.initialize_path_op, { model.path_initial_value_t: path_embeddings }) # Initialize the NC embeddings if hparams.input in ['dist-nc', 'integrated-nc']: session.run(model.initialize_nc_op, { model.nc_initial_value_t: nc_embeddings }) # Load the labels print('Loading labels...') train_labels = model.load_labels(session, train_instances) val_labels = model.load_labels(session, val_instances) test_labels = model.load_labels(session, test_instances) save_path = '{logdir}/results/{dataset}/{input}/{corpus}'.format( logdir=FLAGS.logdir, dataset=FLAGS.dataset, corpus=model.hparams.corpus, input=input_dir) if not os.path.exists(save_path): os.makedirs(save_path) # Train the model print('Training the model...') model.fit(session, train_instances, epoch_completed, val_instances, val_labels, save_path) # Print the best performance on the validation set print('Best performance on the validation set: F1=%.3f' % epoch_completed.best_f1) # Evaluate on the train and validation sets lexnet_common.full_evaluation(model, session, train_instances, train_labels, 'Train', classes) lexnet_common.full_evaluation(model, session, val_instances, val_labels, 'Validation', classes) test_predictions = lexnet_common.full_evaluation( model, session, test_instances, test_labels, 'Test', classes) # Write the test predictions to a file predictions_file = os.path.join(save_path, 'test_predictions.tsv') print('Saving test predictions to %s' % save_path) test_pairs = model.load_pairs(session, test_instances) lexnet_common.write_predictions(test_pairs, test_labels, test_predictions, classes, predictions_file) def epoch_completed(model, session, epoch, epoch_loss, val_instances, val_labels, save_path): """Runs every time an epoch completes. Print the performance on the validation set, and update the saved model if its performance is better on the previous ones. If the performance dropped, tell the training to stop. Args: model: The currently trained path-based model. session: The current TensorFlow session. epoch: The epoch number. epoch_loss: The current epoch loss. val_instances: The validation set instances (evaluation between epochs). val_labels: The validation set labels (for evaluation between epochs). save_path: Where to save the model. Returns: whether the training should stop. """ stop_training = False # Evaluate on the validation set val_pred = model.predict(session, val_instances) precision, recall, f1, _ = metrics.precision_recall_fscore_support( val_labels, val_pred, average='weighted') print( 'Epoch: %d/%d, Loss: %f, validation set: P: %.3f, R: %.3f, F1: %.3f\n' % ( epoch + 1, model.hparams.num_epochs, epoch_loss, precision, recall, f1)) # If the F1 is much smaller than the previous one, stop training. Else, if # it's bigger, save the model. if f1 < epoch_completed.best_f1 - 0.08: stop_training = True if f1 > epoch_completed.best_f1: saver = tf.train.Saver() checkpoint_filename = os.path.join(save_path, 'best.ckpt') print('Saving model in: %s' % checkpoint_filename) saver.save(session, checkpoint_filename) print('Model saved in file: %s' % checkpoint_filename) epoch_completed.best_f1 = f1 return stop_training epoch_completed.best_f1 = 0 if __name__ == '__main__': tf.app.run(main)