# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of the Neural Programmer model described in https://openreview.net/pdf?id=ry2YOrcge This file calls functions to load & pre-process data, construct the TF graph and performs training or evaluation as specified by the flag evaluator_job Author: aneelakantan (Arvind Neelakantan) """ from __future__ import print_function import time from random import Random import numpy as np import tensorflow as tf import model import wiki_data import parameters import data_utils tf.flags.DEFINE_integer("train_steps", 100001, "Number of steps to train") tf.flags.DEFINE_integer("eval_cycle", 500, "Evaluate model at every eval_cycle steps") tf.flags.DEFINE_integer("max_elements", 100, "maximum rows that are considered for processing") tf.flags.DEFINE_integer( "max_number_cols", 15, "maximum number columns that are considered for processing") tf.flags.DEFINE_integer( "max_word_cols", 25, "maximum number columns that are considered for processing") tf.flags.DEFINE_integer("question_length", 62, "maximum question length") tf.flags.DEFINE_integer("max_entry_length", 1, "") tf.flags.DEFINE_integer("max_passes", 4, "number of operation passes") tf.flags.DEFINE_integer("embedding_dims", 256, "") tf.flags.DEFINE_integer("batch_size", 20, "") tf.flags.DEFINE_float("clip_gradients", 1.0, "") tf.flags.DEFINE_float("eps", 1e-6, "") tf.flags.DEFINE_float("param_init", 0.1, "") tf.flags.DEFINE_float("learning_rate", 0.001, "") tf.flags.DEFINE_float("l2_regularizer", 0.0001, "") tf.flags.DEFINE_float("print_cost", 50.0, "weighting factor in the objective function") tf.flags.DEFINE_string("job_id", "temp", """job id""") tf.flags.DEFINE_string("output_dir", "../model/", """output_dir""") tf.flags.DEFINE_string("data_dir", "../data/", """data_dir""") tf.flags.DEFINE_integer("write_every", 500, "wrtie every N") tf.flags.DEFINE_integer("param_seed", 150, "") tf.flags.DEFINE_integer("python_seed", 200, "") tf.flags.DEFINE_float("dropout", 0.8, "dropout keep probability") tf.flags.DEFINE_float("rnn_dropout", 0.9, "dropout keep probability for rnn connections") tf.flags.DEFINE_float("pad_int", -20000.0, "number columns are padded with pad_int") tf.flags.DEFINE_string("data_type", "double", "float or double") tf.flags.DEFINE_float("word_dropout_prob", 0.9, "word dropout keep prob") tf.flags.DEFINE_integer("word_cutoff", 10, "") tf.flags.DEFINE_integer("vocab_size", 10800, "") tf.flags.DEFINE_boolean("evaluator_job", False, "wehther to run as trainer/evaluator") tf.flags.DEFINE_float( "bad_number_pre_process", -200000.0, "number that is added to a corrupted table entry in a number column") tf.flags.DEFINE_float("max_math_error", 3.0, "max square loss error that is considered") tf.flags.DEFINE_float("soft_min_value", 5.0, "") FLAGS = tf.flags.FLAGS class Utility: #holds FLAGS and other variables that are used in different files def __init__(self): global FLAGS self.FLAGS = FLAGS self.unk_token = "UNK" self.entry_match_token = "entry_match" self.column_match_token = "column_match" self.dummy_token = "dummy_token" self.tf_data_type = {} self.tf_data_type["double"] = tf.float64 self.tf_data_type["float"] = tf.float32 self.np_data_type = {} self.np_data_type["double"] = np.float64 self.np_data_type["float"] = np.float32 self.operations_set = ["count"] + [ "prev", "next", "first_rs", "last_rs", "group_by_max", "greater", "lesser", "geq", "leq", "max", "min", "word-match" ] + ["reset_select"] + ["print"] self.word_ids = {} self.reverse_word_ids = {} self.word_count = {} self.random = Random(FLAGS.python_seed) def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print("dev set accuracy after ", i, " : ", gc / num_examples) print(num_examples, len(data)) print("--------") def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print("step ", i, " ", time_taken, " seconds ") start = end print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle) train_set_loss = 0.0 def master(train_data, dev_data, utility): #creates TF graph and calls trainer or evaluator batch_size = utility.FLAGS.batch_size model_dir = utility.FLAGS.output_dir + "/model" + utility.FLAGS.job_id + "/" #create all paramters of the model param_class = parameters.Parameters(utility) params, global_step, init = param_class.parameters(utility) key = "test" if (FLAGS.evaluator_job) else "train" graph = model.Graph(utility, batch_size, utility.FLAGS.max_passes, mode=key) graph.create_graph(params, global_step) prev_dev_error = 0.0 final_loss = 0.0 final_accuracy = 0.0 #start session with tf.Session() as sess: sess.run(init.name) sess.run(graph.init_op.name) to_save = params.copy() saver = tf.train.Saver(to_save, max_to_keep=500) if (FLAGS.evaluator_job): while True: selected_models = {} file_list = tf.gfile.ListDirectory(model_dir) for model_file in file_list: if ("checkpoint" in model_file or "index" in model_file or "meta" in model_file): continue if ("data" in model_file): model_file = model_file.split(".")[0] model_step = int( model_file.split("_")[len(model_file.split("_")) - 1]) selected_models[model_step] = model_file file_list = sorted(selected_models.items(), key=lambda x: x[0]) if (len(file_list) > 0): file_list = file_list[0:len(file_list) - 1] print("list of models: ", file_list) for model_file in file_list: model_file = model_file[1] print("restoring: ", model_file) saver.restore(sess, model_dir + "/" + model_file) model_step = int( model_file.split("_")[len(model_file.split("_")) - 1]) print("evaluating on dev ", model_file, model_step) evaluate(sess, dev_data, batch_size, graph, model_step) else: ckpt = tf.train.get_checkpoint_state(model_dir) print("model dir: ", model_dir) if (not (tf.gfile.IsDirectory(utility.FLAGS.output_dir))): print("create dir: ", utility.FLAGS.output_dir) tf.gfile.MkDir(utility.FLAGS.output_dir) if (not (tf.gfile.IsDirectory(model_dir))): print("create dir: ", model_dir) tf.gfile.MkDir(model_dir) Train(graph, utility, batch_size, train_data, sess, model_dir, saver) def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print("# train examples ", len(train_data)) print("# dev examples ", len(dev_data)) print("# test examples ", len(test_data)) print("running open source") #construct TF graph and train or evaluate master(train_data, dev_data, utility) if __name__ == "__main__": tf.app.run()