# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Factory module for getting the complete image to voxel generation network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import perspective_projector from nets import ptn_encoder from nets import ptn_vox_decoder _NAME_TO_NETS = { 'ptn_encoder': ptn_encoder, 'ptn_vox_decoder': ptn_vox_decoder, 'perspective_projector': perspective_projector, } def _get_network(name): """Gets a single encoder/decoder network model.""" if name not in _NAME_TO_NETS: raise ValueError('Network name [%s] not recognized.' % name) return _NAME_TO_NETS[name].model def get(params, is_training=False, reuse=False, run_projection=True): """Factory function to get the training/pretraining im->vox model (NIPS16). Args: params: Different parameters used througout ptn, typically FLAGS (dict). is_training: Set to True if while training (boolean). reuse: Set as True if sharing variables with a model that has already been built (boolean). run_projection: Set as False if not interested in mask and projection images. Useful in evaluation routine (boolean). Returns: Model function for network (inputs to outputs). """ def model(inputs): """Model function corresponding to a specific network architecture.""" outputs = {} # First, build the encoder encoder_fn = _get_network(params.encoder_name) with tf.variable_scope('encoder', reuse=reuse): # Produces id/pose units enc_outputs = encoder_fn(inputs['images_1'], params, is_training) outputs['ids_1'] = enc_outputs['ids'] # Second, build the decoder and projector decoder_fn = _get_network(params.decoder_name) with tf.variable_scope('decoder', reuse=reuse): outputs['voxels_1'] = decoder_fn(outputs['ids_1'], params, is_training) if run_projection: projector_fn = _get_network(params.projector_name) with tf.variable_scope('projector', reuse=reuse): outputs['projs_1'] = projector_fn( outputs['voxels_1'], inputs['matrix_1'], params, is_training) # Infer the ground-truth mask with tf.variable_scope('oracle', reuse=reuse): outputs['masks_1'] = projector_fn(inputs['voxels'], inputs['matrix_1'], params, False) # Third, build the entire graph (bundled strategy described in PTN paper) for k in range(1, params.step_size): with tf.variable_scope('projector', reuse=True): outputs['projs_%d' % (k + 1)] = projector_fn( outputs['voxels_1'], inputs['matrix_%d' % (k + 1)], params, is_training) with tf.variable_scope('oracle', reuse=True): outputs['masks_%d' % (k + 1)] = projector_fn( inputs['voxels'], inputs['matrix_%d' % (k + 1)], params, False) return outputs return model