# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training/Pretraining encoder as used in PTN (NIPS16).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim def _preprocess(images): return images * 2 - 1 def model(images, params, is_training): """Model encoding the images into view-invariant embedding.""" del is_training # Unused image_size = images.get_shape().as_list()[1] f_dim = params.f_dim fc_dim = params.fc_dim z_dim = params.z_dim outputs = dict() images = _preprocess(images) with slim.arg_scope( [slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1)): h0 = slim.conv2d(images, f_dim, [5, 5], stride=2, activation_fn=tf.nn.relu) h1 = slim.conv2d(h0, f_dim * 2, [5, 5], stride=2, activation_fn=tf.nn.relu) h2 = slim.conv2d(h1, f_dim * 4, [5, 5], stride=2, activation_fn=tf.nn.relu) # Reshape layer s8 = image_size // 8 h2 = tf.reshape(h2, [-1, s8 * s8 * f_dim * 4]) h3 = slim.fully_connected(h2, fc_dim, activation_fn=tf.nn.relu) h4 = slim.fully_connected(h3, fc_dim, activation_fn=tf.nn.relu) outputs['ids'] = slim.fully_connected(h4, z_dim, activation_fn=tf.nn.relu) outputs['poses'] = slim.fully_connected(h4, z_dim, activation_fn=tf.nn.relu) return outputs