# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Creates rotator network model. This model performs the out-of-plane rotations given input image and action. The action is either no-op, rotate clockwise or rotate counter-clockwise. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def bilinear(input_x, input_y, output_size): """Define the bilinear transformation layer.""" shape_x = input_x.get_shape().as_list() shape_y = input_y.get_shape().as_list() weights_initializer = tf.truncated_normal_initializer(stddev=0.02, seed=1) biases_initializer = tf.constant_initializer(0.0) matrix = tf.get_variable("Matrix", [shape_x[1], shape_y[1], output_size], tf.float32, initializer=weights_initializer) bias = tf.get_variable("Bias", [output_size], initializer=biases_initializer) # Add to GraphKeys.MODEL_VARIABLES tf.contrib.framework.add_model_variable(matrix) tf.contrib.framework.add_model_variable(bias) # Define the transformation h0 = tf.matmul(input_x, tf.reshape(matrix, [shape_x[1], shape_y[1]*output_size])) h0 = tf.reshape(h0, [-1, shape_y[1], output_size]) h1 = tf.tile(tf.reshape(input_y, [-1, shape_y[1], 1]), [1, 1, output_size]) h1 = tf.multiply(h0, h1) return tf.reduce_sum(h1, 1) + bias def model(poses, actions, params, is_training): """Model for performing rotation.""" del is_training # Unused return bilinear(poses, actions, params.z_dim)