# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training decoder as used in PTN (NIPS16).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim @tf.contrib.framework.add_arg_scope def conv3d_transpose(inputs, num_outputs, kernel_size, stride=1, padding='SAME', activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer(), biases_initializer=tf.zeros_initializer(), reuse=None, trainable=True, scope=None): """Wrapper for conv3d_transpose layer. This function wraps the tf.conv3d_transpose with basic non-linearity. Tt creates a variable called `weights`, representing the kernel, that is convoled with the input. A second varibale called `biases' is added to the result of operation. """ with tf.variable_scope( scope, 'Conv3d_transpose', [inputs], reuse=reuse): dtype = inputs.dtype.base_dtype kernel_d, kernel_h, kernel_w = kernel_size[0:3] num_filters_in = inputs.get_shape()[4] weights_shape = [kernel_d, kernel_h, kernel_w, num_outputs, num_filters_in] weights = tf.get_variable('weights', shape=weights_shape, dtype=dtype, initializer=weights_initializer, trainable=trainable) tf.contrib.framework.add_model_variable(weights) input_shape = inputs.get_shape().as_list() batch_size = input_shape[0] depth = input_shape[1] height = input_shape[2] width = input_shape[3] def get_deconv_dim(dim_size, stride_size): # Only support padding='SAME'. if isinstance(dim_size, tf.Tensor): dim_size = tf.multiply(dim_size, stride_size) elif dim_size is not None: dim_size *= stride_size return dim_size out_depth = get_deconv_dim(depth, stride) out_height = get_deconv_dim(height, stride) out_width = get_deconv_dim(width, stride) out_shape = [batch_size, out_depth, out_height, out_width, num_outputs] outputs = tf.nn.conv3d_transpose(inputs, weights, out_shape, [1, stride, stride, stride, 1], padding=padding) outputs.set_shape(out_shape) if biases_initializer is not None: biases = tf.get_variable('biases', shape=[num_outputs,], dtype=dtype, initializer=biases_initializer, trainable=trainable) tf.contrib.framework.add_model_variable(biases) outputs = tf.nn.bias_add(outputs, biases) if activation_fn: outputs = activation_fn(outputs) return outputs def model(identities, params, is_training): """Model transforming embedding to voxels.""" del is_training # Unused f_dim = params.f_dim # Please refer to the original implementation: github.com/xcyan/nips16_PTN # In TF replication, we use a slightly different architecture. with slim.arg_scope( [slim.fully_connected, conv3d_transpose], weights_initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1)): h0 = slim.fully_connected( identities, 4 * 4 * 4 * f_dim * 8, activation_fn=tf.nn.relu) h1 = tf.reshape(h0, [-1, 4, 4, 4, f_dim * 8]) h1 = conv3d_transpose( h1, f_dim * 4, [4, 4, 4], stride=2, activation_fn=tf.nn.relu) h2 = conv3d_transpose( h1, int(f_dim * 3 / 2), [5, 5, 5], stride=2, activation_fn=tf.nn.relu) h3 = conv3d_transpose( h2, 1, [6, 6, 6], stride=2, activation_fn=tf.nn.sigmoid) return h3