#!/usr/bin/python # # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Neural Network Image Compression Decoder. Decompress an image from the numpy's npz format generated by the encoder. Example usage: python decoder.py --input_codes=output_codes.pkl --iteration=15 \ --output_directory=/tmp/compression_output/ --model=residual_gru.pb """ import io import os import numpy as np import tensorflow as tf tf.flags.DEFINE_string('input_codes', None, 'Location of binary code file.') tf.flags.DEFINE_integer('iteration', -1, 'The max quality level of ' 'the images to output. Use -1 to infer from loaded ' ' codes.') tf.flags.DEFINE_string('output_directory', None, 'Directory to save decoded ' 'images.') tf.flags.DEFINE_string('model', None, 'Location of compression model.') FLAGS = tf.flags.FLAGS def get_input_tensor_names(): name_list = ['GruBinarizer/SignBinarizer/Sign:0'] for i in range(1, 16): name_list.append('GruBinarizer/SignBinarizer/Sign_{}:0'.format(i)) return name_list def get_output_tensor_names(): return ['loop_{0:02d}/add:0'.format(i) for i in range(0, 16)] def main(_): if (FLAGS.input_codes is None or FLAGS.output_directory is None or FLAGS.model is None): print('\nUsage: python decoder.py --input_codes=output_codes.pkl ' '--iteration=15 --output_directory=/tmp/compression_output/ ' '--model=residual_gru.pb\n\n') return if FLAGS.iteration < -1 or FLAGS.iteration > 15: print('\n--iteration must be between 0 and 15 inclusive, or -1 to infer ' 'from file.\n') return iteration = FLAGS.iteration if not tf.gfile.Exists(FLAGS.output_directory): tf.gfile.MkDir(FLAGS.output_directory) if not tf.gfile.Exists(FLAGS.input_codes): print('\nInput codes not found.\n') return contents = '' with tf.gfile.FastGFile(FLAGS.input_codes, 'rb') as code_file: contents = code_file.read() loaded_codes = np.load(io.BytesIO(contents)) assert ['codes', 'shape'] not in loaded_codes.files loaded_shape = loaded_codes['shape'] loaded_array = loaded_codes['codes'] # Unpack and recover code shapes. unpacked_codes = np.reshape(np.unpackbits(loaded_array) [:np.prod(loaded_shape)], loaded_shape) numpy_int_codes = np.split(unpacked_codes, len(unpacked_codes)) if iteration == -1: iteration = len(unpacked_codes) - 1 # Convert back to float and recover scale. numpy_codes = [np.squeeze(x.astype(np.float32), 0) * 2 - 1 for x in numpy_int_codes] with tf.Graph().as_default() as graph: # Load the inference model for decoding. with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file: graph_def = tf.GraphDef() graph_def.ParseFromString(model_file.read()) _ = tf.import_graph_def(graph_def, name='') # For encoding the tensors into PNGs. input_image = tf.placeholder(tf.uint8) encoded_image = tf.image.encode_png(input_image) input_tensors = [graph.get_tensor_by_name(name) for name in get_input_tensor_names()][0:iteration+1] outputs = [graph.get_tensor_by_name(name) for name in get_output_tensor_names()][0:iteration+1] feed_dict = {key: value for (key, value) in zip(input_tensors, numpy_codes)} with tf.Session(graph=graph) as sess: results = sess.run(outputs, feed_dict=feed_dict) for index, result in enumerate(results): img = np.uint8(np.clip(result + 0.5, 0, 255)) img = img.squeeze() png_img = sess.run(encoded_image, feed_dict={input_image: img}) with tf.gfile.FastGFile(os.path.join(FLAGS.output_directory, 'image_{0:02d}.png'.format(index)), 'w') as output_image: output_image.write(png_img) if __name__ == '__main__': tf.app.run()