#!/usr/bin/python # # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Neural Network Image Compression Encoder. Compresses an image to a binarized numpy array. The image must be padded to a multiple of 32 pixels in height and width. Example usage: python encoder.py --input_image=/your/image/here.png \ --output_codes=output_codes.pkl --iteration=15 --model=residual_gru.pb """ import io import os import numpy as np import tensorflow as tf tf.flags.DEFINE_string('input_image', None, 'Location of input image. We rely ' 'on tf.image to decode the image, so only PNG and JPEG ' 'formats are currently supported.') tf.flags.DEFINE_integer('iteration', 15, 'Quality level for encoding image. ' 'Must be between 0 and 15 inclusive.') tf.flags.DEFINE_string('output_codes', None, 'File to save output encoding.') tf.flags.DEFINE_string('model', None, 'Location of compression model.') FLAGS = tf.flags.FLAGS def get_output_tensor_names(): name_list = ['GruBinarizer/SignBinarizer/Sign:0'] for i in range(1, 16): name_list.append('GruBinarizer/SignBinarizer/Sign_{}:0'.format(i)) return name_list def main(_): if (FLAGS.input_image is None or FLAGS.output_codes is None or FLAGS.model is None): print('\nUsage: python encoder.py --input_image=/your/image/here.png ' '--output_codes=output_codes.pkl --iteration=15 ' '--model=residual_gru.pb\n\n') return if FLAGS.iteration < 0 or FLAGS.iteration > 15: print('\n--iteration must be between 0 and 15 inclusive.\n') return with tf.gfile.FastGFile(FLAGS.input_image, 'rb') as input_image: input_image_str = input_image.read() with tf.Graph().as_default() as graph: # Load the inference model for encoding. with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file: graph_def = tf.GraphDef() graph_def.ParseFromString(model_file.read()) _ = tf.import_graph_def(graph_def, name='') input_tensor = graph.get_tensor_by_name('Placeholder:0') outputs = [graph.get_tensor_by_name(name) for name in get_output_tensor_names()] input_image = tf.placeholder(tf.string) _, ext = os.path.splitext(FLAGS.input_image) if ext == '.png': decoded_image = tf.image.decode_png(input_image, channels=3) elif ext == '.jpeg' or ext == '.jpg': decoded_image = tf.image.decode_jpeg(input_image, channels=3) else: assert False, 'Unsupported file format {}'.format(ext) decoded_image = tf.expand_dims(decoded_image, 0) with tf.Session(graph=graph) as sess: img_array = sess.run(decoded_image, feed_dict={input_image: input_image_str}) results = sess.run(outputs, feed_dict={input_tensor: img_array}) results = results[0:FLAGS.iteration + 1] int_codes = np.asarray([x.astype(np.int8) for x in results]) # Convert int codes to binary. int_codes = (int_codes + 1)//2 export = np.packbits(int_codes.reshape(-1)) output = io.BytesIO() np.savez_compressed(output, shape=int_codes.shape, codes=export) with tf.gfile.FastGFile(FLAGS.output_codes, 'w') as code_file: code_file.write(output.getvalue()) if __name__ == '__main__': tf.app.run()